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Abstract. To bridge length scales in plastic flow of polycrystalline fcc metals, the salient features
of 3D polycrystalline elastoviscoplasticity at the crystal level (mesoscale) were studied to determine
the relative influences on macroscale behaviour. This 3D study builds upon the 2D planar double-
slip analysis performed by Horstemeyer and McDowell in which the relative influence of the
constitutive-law features on macroscale properties in polycrystal plasticity were quantified for
oxygen-free, high-conductivity copper. The mesoscale constitutive-law features considered include
single-crystal elastic properties, slip-system-level hardening law, latent hardening, slip-system-
level kinematic hardening, and intergranular constraint relation. Volume-averaged macroscale
responses included the effective flow stress, plastic spin, elastic moduli, hardening behaviour, and
axial extension (for the free-end torsion case). Each response was evaluated at 10% and 50%
effective strain levels under rectilinear shear straining. In the existing literature, only one type
of behaviour (e.g. texture or stress–strain response) is typically considered when assessing these
various elements of the constitutive framework. In this paper, we develop a more comprehensive
understanding of the relative importance of constitutive-law features as deformation proceeds. This
study suggests that the design of experiments methodology is a valuable tool to assist in selecting
relevant features for polycrystalline simulations and for development of macroscale unified-creep-
plasticity models. In general, the results indicated that the intergranular constraint and kinematic
hardening were more influential overall than the type of constitutive model used, whether isotropic
or anisotropic elasticity was used, and whether or not latent hardening was used. Finally, 3D results
were similar to the previous 2D planar double-slip study of Horstemeyer and McDowell, except that
latent hardening had a stronger influence on the 3D macroscale responses than the 2D macroscale
responses.

1. Introduction

Continuum-slip polycrystal plasticity models have become quite popular in recent years as
a tool to study deformation and texture behaviour of metals during processing (cf. Dawson
(1987), Kalidindiet al (1992)) and shear localization (cf. Peirceet al (1982), Rashidet al
(1992)). The basic elements of the theory consist of (i) slip-system hardening laws to reflect
intragranular work hardening, including self- and latent-hardening components (Kocks 1976,
1987) and (ii) intergranular constraint laws to govern interactions among grains. The theory is
acknowledged for providing somewhat realistic prediction/correlation of texture development
and stress–strain behaviour at large strains.

Different authors have developed or recommended various forms of the basic elements
of polycrystal plasticity theory that address specific applications, strain levels of interest and
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so forth. To date, however, there has been no systematic application of objective principles to
discern the relative influence of various elements of the 3D theory on the collective macroscale
responses. Hence, studies on different strain regimes and deformation paths have led to
disparate conclusions regarding the relative importance and viability of specific forms of
hardening laws, constraint relations, and other elements of constitutive laws. In this paper,
we present a ‘design of experiments’ (DOE) methodology to quantify the relative influence
of different theory elements on prediction of macroscale behaviour at various strain levels for
rectilinear shearing. This methodology is intended primarily to give guidance as to which
attributes should receive critical attention and which are relatively insignificant in a given
application. Polycrystal elastoviscoplasticity is a good example of a highly nonlinear, coupled
set of constitutive laws at the scale of individual grains which produces collective description
of behaviour over many grains that is not easily traced to assumptions at the primal scale.

The DOE approach was used to quantify relative differences between effects of various
mesoscale features on the macroscale volume-averaged (mean) polycrystalline responses.
Such a method does not evaluate the accuracy of any given model, just the relative influence of
the various nonlinear model features. The DOE approach was applied to a 2D planar double-slip
elastoviscoplastic formulation (Horstemeyer and McDowell 1997) but has not been used for 3D
crystal plasticity. Numerical results were correlated with the experimental torsional effective
stress-strain curves for oxygen-free, high-conductivity copper (OFHC Cu). Mesoscale model
features (parameters in the DOE) considered included the single-crystal elastic properties,
slip-system-level hardening law, latent hardening law, slip-system-level kinematic hardening,
and the intergranular constraint relation. The volume-averaged macroscale responses included
the effective flow stress, texture, plastic spin, elastic moduli, hardening behaviour, and axial
stress (for the fixed-end torsion case). Each response was evaluated at 10% and 50% effective
strain.

The DOE is a statistical analysis that employs orthogonality principles to evaluate the
relative influence of mesoscale model features on the macroscale responses. This sensitivity
study is the first of its type known to the authors applied to the various elements of 3D
polycrystalline plasticity theory. Essentially, the DOE approach offers the capability to assess
the sensitivity of the macroscale model predications to various independent features of the
mesoscale constitutive relations. This methodology is not limited to polycrystalline metals,
although that is the context of this article. After presenting the methodology, we consider the
influence of various parameters:

(a) whether the single crystal elastic properties are isotropic or anisotropic;
(b) the type of intergranular constraint employed: Taylor (1938) or finite-element method
(c) effects of latent hardening versus Taylor hardening;
(d) the form of hardening model used: Armstrong and Frederick (1966) or Rashid and Nemat

Nasser (1990);
(e) whether or not slip-system kinematic hardening is used (Horstemeyer and McDowell

1997).

The responses given by the macroscale volume-averaged quantities (effective flow stress,
work-hardening rate, plastic spin, elastic moduli, and axial extension) are then discussed.
Finally, some comparisons with the planar double-slip study are discussed.

2. Statistical design of experiments technique

The earliest works that relate statistical procedures to physical experiments were due to Sir
Ronald Fisher (1935a, b). As a result of his work, statisticians used several analysis of variance
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techniques to interpret physical experimental data (Boxet al1978). DOE is one such technique.
Taguchi (1974, 1986, 1987) popularized the DOE method for use in the quality-engineering
area. Nelder and Lee (1991) discussed the use of linear statistical models for DOE analysis.
Nair and Shoemaker (1990) reviewed various applications of the DOE. Nair (1992) led a
panel discussion covering the mathematical and practical applications of DOE methods. In
the present DOE study, the ‘experiments’ are not physical but numerical in nature.

An investigator can select a number of levels for each variable or parameter and then run
experiments to evaluate the parametric effect in an efficient manner. Hence, any number of
levels or parameters can be placed in an orthogonal array so as to efficiently determine the
parametric effects. Orthogonality refers to statistically independent or balanced parameters that
make up the columns of the array. Once the number of levels and parameters are determined,
an orthogonal array is set up to determine the number of experiments needed (Taguchi 1986,
1987). The terminology of orthogonal arraysLx(yz) is as follows. ‘x’ denotes the number of
calculations in the experiment, ‘y’ denotes the number of levels, and ‘z’ denotes the number
of parameters. For example, to examine eight parameters at three levels, one would have an
orthogonal array represented byL18(38) (cf. Taguchi (1986)) which would reduce the number
of calculations if performed linearly in series from 6561 to 18.

For the purposes of understanding the relative influence of the various polycrystalline
mesoscale model features on macroscale responses, only two levels were chosen with five
independent variables. As such, the appropriate orthogonal array is theL8 array. TheL8

represents an orthogonal array of equations represented by eight ‘experiments’. TheL8 array
allows up to seven independentparameterswith two levels for each parameter. Eachlevel
can be characterized by an appropriate attribute. For example, theparametercould be the
intergranular constraint, and the twolevelsmight be defined by either the Taylor constraint
(Taylor 1938) or use of the finite-element method. Although a full factorial set of calculations
could be performed to vary each parameter in a linear fashion, a DOE reduces the set of
calculations in a repeatable, cost-effective manner such that data can be easily translated into
meaningful and verifiable conclusions. With this technique, relevant data can be extracted from
a relatively small number of experiments (or numerical calculations). Clearly, the advantages
of DOE as a screening process for parameter influence grow exponentially as the number of
parameter variations increases. Table 1 shows theL8 array of calculations performed in the
present example.

Table 1. L8 orthogonal array showing the parameters.

Kinematic Latent Hardening Intergranular Elastic
Calculation hardening hardening model constraint properties

1 Yes 1.0 AF FEM Anisotropic
2 Yes 1.0 AF Taylor Isotropic
3 Yes 1.4 RNN FEM Anisotropic
4 Yes 1.4 RNN Taylor Isotropic
5 No 1.0 RNN FEM Isotropic
6 No 1.0 RNN Taylor Anisotropic
7 No 1.4 AF FEM Isotropic
8 No 1.4 AF Taylor Anisotropic
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3. Mesoscale influence parameters

In this section, we describe each parameter with its corresponding two levels. The term ‘model
feature’ is used interchangeably with ‘parameter’ in this context since we have focussed
on constitutive models. Before the model features are discussed, some explanation for the
crystalline kinematics is in order to show that all the model features are interdependent.
For example in a current configuration formulation, three main coupled ordinary differential
equations need to be simultaneously solved, i.e.
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whereσ is the Cauchy stress,D is the rate of deformation,W is the continuum spin,De is
the elastic rate of deformation,W e is the elastic spin,̂D

p
is the plastic rate of deformation,

Ŵ
p

is the plastic spin,C∗ is the elastic moduli rotated to the current configuration, andB∗

is the elastic compliance rotated to the current configuration. The different terms arise when
the multiplicative decomposition of the deformation gradient is divided into elastic (including
rigid lattice rotation) and plastic parts, i.e.F = F eF p.

F p is computed at the end of the time step by applying the Cayley–Hamilton theorem,

F
p
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(
Lp1t

)
F

p
t (4)

whereF p
t andF p

t+1t are the plastic deformation gradients at the beginning and end of the time
step, respectively.Lp is the plastic velocity gradient in the intermediate configuration that
occurs during the time step, which is determined by (Asaro 1983)

Lp =
N∑
i=1

γ̇i
(
si ⊗mi

)
(5)

whereN is the number of slip systems, ˙γi is the continuum slip or shear rate on theith slip
system,si is the slip direction vector, andmi is the slip-plane normal vector.

The focus of this paper is not to identify the absolute accuracy of specific models of
microstructural phenomena; many representations exist to model hardening, for example, that
may be more accurate than either the Rashid–Nemat Nasser hardening rule or the Armstrong–
Frederick (Armstrong and Frederick 1966) form used in this work. We focus instead on an
objective methodology by which we can assess the relative influence of various elements or
model features within a complex, highly nonlinear and coupled constitutive framework such
as polycrystal plasticity. This is relevant to sorting out key mesostructure, macro-property
relationships that should receive particular attention in building up robust, physically based
models. Although humans (particularly experts!) can assimilate such relative comparisons
in manual fashion to a reasonable degree, such assessments are often biassed towards pre-
conceived notions of proper model components or assemblages thereof. Specifically, in
the context of the hierarchical modelling ideas discussed by Olson (1997), we contend
that the DOE methodology may provide quantitative indication of cause-and-effect between
micro/mesostructure and performance at the macroscopic level, thereby focussing attention on
the most salient elements of evolving microstructure. As Olson puts it,

. . . much of materials science is the art of discriminating the essential from the
nonessential. . . as weunravel the complex products of empirical development to
control desired properties. It is reciprocity that gives us the tools for materials design.



DOE for model selection 257

Olson mentions the reciprocity principle first elaborated by Cohen (1976), which states
that although we typically regard properties as controlled by structure, we may also regard
structure as controlled by properties in terms of our conception or idealization of that structure.
This permits us to distil simplicity from complexity by focussing on specific properties
or performance attributes. In this case, we are interested in discerning the appropriate
tools for modelling structure–property relations, assuming that mesoscale structure evolution
is represented in the phenomenological sets of grain-level constitutive laws. Orthogonal
statistical DOE methods are rather well suited for this algorithm. To proceed, it is necessary to
identify those macroscopic performance goals/parameters of most interest. Then, the relative
importance of the microstructural model features changes as a function of the selected set of
material performance indices.

We next consider examples of different mesoscale representations/models which will be
used to examine relative effects on the macroscale response function of the polycrystalline
aggregate. Those selected here for illustration are of a very well established, simple character
and are chosen to provide a wide range of description at the mesoscale (i.e. single grain or
small sets of grains).

3.1. Isotropic versus anisotropic elasticity

Elastic properties arise from the binding forces of atoms as affected by the distance between
them. The elastic properties of single crystals can be highly anisotropic and can vary with the
orientation of the crystal lattice.

The hyperelastic relation is specified in the intermediate, or stress-free, configuration as

σ̂
(
Ê
)
= C : Ê (6)

where the elastic stiffness tensor,C, is invariant for a given crystal in the intermediate
configuration (cf. Asaro (1983)). The intermediate configuration is aligned with the crystalline
axes. σ̂ is the second Piola–Kirchhoff stress in the intermediate configuration, andÊ is the
conjugate Green elastic strain. For cubic orthotropy, the single-crystal elastic moduli are
formed on axes of cubic symmetry (〈100〉, 〈010〉, and〈001〉 axes). By defining

C1 = C1111= C2222= C3333

C2 = C1122= C2233= C1133

C3 = C1212= C1313= C2323

(7)

the components are formed on the cartesian axes coincident with (〈100〉, 〈010〉, and〈001〉
axes) with all otherCijkl equal to zero. The stress in the current configuration is related to the
second Piola–Kirchhoff stress by

σ = 1

J
F eσ̂ F eT

. (8)

Now the Zener anisotropy factor as related to the crystal axis (not the specimen axis) is
given by

Z = 2C3

C1− C2
. (9)

WhenZ = 1, the elastic properties are isotropic; however,Z > 3 for Cu single crystals.
In finite inelastic deformation, grains rotate and tend to align themselves statistically toward
a pole. As each grain rotates, elasticity is considered to influence macroscale mechanical
behaviour (Franceet al1967). Lowe and Lipkin (1990) showed that anisotropic single-crystal
elastic properties are necessary for determining macroscale responses under non-monotonic
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loading conditions at finite strain. Cuitino and Ortiz (1992) used anisotropic single-crystal
elastic properties for a strain-localization problem. Alternatively, Rashidet al (1992), in
the spirit of Lin (1957), used isotropic single-crystal properties and showed that localization
(and strain softening) does not depend on elastic anisotropy. None of these works compared
isotropic and anisotropic elasticity directly.

The elastic properties in this study are used to compare the influence of single-crystal
isotropic versus anisotropic elasticity. The single-crystal elastic constants used are given in
table A1 in the appendix.

3.2. Intergranular constraint relation

The intergranular constraint plays a crucial role in determining accurate macroscale responses
(Honneff and Mecking 1978), since each grain is assumed to possess a distinct crystallographic
orientation. Hence, the intergranular constraint controls the effects of crystallographic
misorientations among grains. In the DOE study we use a Taylor-type (Taylor 1938) constraint
and the finite-element method as two different models. For each analysis, 198 randomly
oriented grains were used. The same deformation was applied to all the grains in the Taylor
analysis. For the finite-element analysis, a 2D plane strain finite-element mesh was used that
allowed 3D rotations for the crystals.

We used the finite-element code ABAQUS for our analyses, in which single-crystal
orientations were used in different elements of the mesh (cf. Kalidindi and Anand (1991),
Kalidindi et al (1992), Dawsonet al (1994)). By using finite elements, the constraints
among grains will relax as deformation proceeds along the lines of a self-consistent modelling
introduced earlier by Hutchinson (1970). The mesh comprised 15 rows by 30 columns of
elements. Uniform uniaxial displacements were applied to the mesh. Only the responses of
the central 198 elements/grains (9 rows by 22 columns) were included in the DOE study in
order to minimize the influences of the boundary conditions.

To solve the polycrystalline boundary-value problem using a single-crystal analysis
without finite elements, an averaging procedure is needed which employs some assumption for
the intergranular constraint. A crystal-to-aggregate averaging theorem (Bishop and Hill 1951,
Hill 1965, Hill and Rice 1972) was developed based on an assumption by Taylor (1938) that the
deformation gradient in each grain is the same. Other types of intergranular constraints have
also been assumed (cf. Eshelby (1957), Kroner (1961), Budiansky and Wu (1962), Honneff
and Mecking (1978), Berveiller and Zaoui (1979), etc). The Taylor constraint produces an
upper bound estimate for flow stress since it ensures compatibility but not equilibrium.

3.3. Hardening models with and without latent hardening

The viscoplastic kinetic relation used in this study is a kinematic hardening generalization of
the form employed by Hutchinson (1976), i.e.

γ̇i = γ̇osgn(τi − αi)
∣∣∣∣τi − αigi

∣∣∣∣M (10)

where the plastic slip rate on theith slip system, ˙γi , is a function of a fixed reference strain
rate, ˙γo, the reference shear strength,gi , the resolved shear stress on the slip system,τi , the rate
sensitivity exponent for the material,M, and an internal state variable representing kinematic
hardening effects resulting from backstress at the slip-system level,αi .

Two forms of the hardening law were chosen for evaluation in the DOE, the Armstrong–
Frederick (Armstrong and Frederick 1966) and Rashid–Nemat Nasser model (Rashid and
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Nemat Nasser 1990). The Armstrong–Frederick form contains an isotropic hardening
evolution law for the internal hardening state variable,gi , on ith slip system given by

ġi = A
12∑
j=1

qij
∣∣γ̇j ∣∣− Bgi 12∑

j=1

∣∣γ̇j ∣∣ (11)

whereA andB are the hardening and recovery moduli used to fit the experimental data, andqij
is the latent hardening ratio that was set to 1.0 for Taylor hardening and 1.4 for stronger latent
hardening in the DOE study. The self-hardening components arise wheni = j and the latent
hardening components arise wheni 6= j . Note that for OFHC Cu the number of potential slip
systems is 12.

The increase or decrease in flow stress on a secondary slip system due to crystallographic
slip on an active slip system is referred to as latent hardening. Taylor and Elam (1923),
based on experimental evidence on aluminum crystals, observed that when latent hardening
equals self-hardening, an isotropic response exists. Kocks (1970) reviewed the behaviour
of several materials under different loading conditions and surmised that an intersecting slip
system induces higher stresses in the well-developed flow-stress regime. The latent hardening
ratio, which is the ratio of hardening on the secondary system compared with the primary
system, ranges from 1.0 to 1.4 for the form used by Hutchinson (1976) and Peirceet al (1982),
sometimes called the PAN rule, where 1.0 corresponds to Taylor hardening.

Hansen and Jensen (1991) showed for tensile tests that texture and conventional latent
hardening effects cannot account for all sources of anisotropy, in general. In essence, latent
hardening models have focussed on dislocation–dislocation interactions, but in reality latent
hardening arises from dislocation–substructure interactions as well. In the latter case, an
evolving latent hardening ratio would be necessary. Although potentially important, an
evolving latent hardening ratio is beyond the scope of this study. We employ the simplified
PAN rule for latent hardening as

qij =
[
δij + lhr

(
1− δij

)]
(12)

wherelhr is the latent hardening ratio, andδij is the Kronecker delta.
Other latent hardening forms have been proposed and might be fruitful to consider in

such parameter studies; for example, Weng (1987) claimed that equation (12) is suitable for
monotonic loadings but does not appropriately represent the forward and reverse interactions of
crystallographic slip. Furthermore, it cannot distinguish between acute and obtuse cross slips
in reversed quasi-static loading conditions. Weng (1987) proposed a rate-independent, three-
parameter model for latent hardening representing forest dislocation features that correlated
with Phillips’ (Phillips and Gray 1961, Phillips and Kasper 1973, Phillips and Das 1985)
measured initial and subsequent yield surfaces under combined stress fields. Havner (1982)
employed a two-parameter rule of Nakada and Keh (1966) to examine latent hardening effects,
showing that the contribution of incremental slip from self-hardening equals that of the latent
system. Bassani and Wu (1991) have introduced a self-hardening formulation that has captured
some of the apparent latent hardening effects.

Other issues regarding latent hardening that are not included in this work include
differences that have been observed from one latent system to the next. Franciosiet al (1980)
determined in Cu and Al single crystals that slip systems in which dislocations can form sessile
junctions appear to exhibit primary latent hardening. Secondary latent hardening is associated
with systems for which dislocations form glissile junctions or Hirth locks with those of the
active slip systems. Also not considered is the influence of the stacking-fault energy; the lower
the stacking-fault energy, the higher the latent hardening. Models to date only empirically fit
constants to the latent hardening equation and physical motivation is often lacking. Finally,



260 M F Horstemeyer et al

although the latent hardening ratio seems to be independent of temperature, alloy type, and
strain rate (Kocks 1970), it does change during deformation, saturating at a strain of the order
of unity. In this study,lhr = 1.0 andlhr = 1.4 as shown in table 1.

Like the Armstrong–Frederick form, the Rashid and Nemat Nasser (1990) isotropic
hardening rule is given with the latent hardening ratio as

ġi =


h0 06 γ 6 γ0
12∑
j=1

h0qij
∣∣γj ∣∣

1 +8
(∣∣γj ∣∣− γ0

) γ0 6 γ
(13)

whereh0,8, andγ0 are material constants.

3.4. Slip-system-level isotropic–kinematic hardening or isotropic hardening

The role of grain-level kinematic hardening was examined in this DOE study to assess its
comparative influence on the macroscale responses. Kinematic hardening at the grain level is
used to model dislocation substructure contribution to the directional dislocation resistance.
Kinematic hardening at the level of the slip system has been rather widely employed to describe
strengthening due to heterogeneous dislocation substructure and attendant Bauschinger effects
(cf. Jordan and Walker (1992)). We employ a substructural internal variable evolution equation
(Horstemeyer and McDowell 1998). From the work of Horstemeyer and McDowell (1998),
calculations were performed that illustrated the effects of the single-crystal kinematic hardening
on texture evolution and stress–strain behaviour. For the Armstrong–Frederick and Rashid–
Nemat Nasser forms, we employ the following equation for each crystal

α̇i = Crate

(
Csatγ̇

i
− αi ‖γ̇i‖

)
(14)

whereCrate controls the rate of evolution, andCsat is the saturation level of the backstress,
where these were chosen to fit the experimental data. The substructural hardening internal
state variable reflects dislocation interactions within the grain (cf. Rice (1971)) and follows
the postulate of Coleman and Gurtin (1967) that the rate must be governed by a differential
equation in which the plastic rate of deformation appears.

We note that a saturation value for the kinematic hardening was chosen to be about 20%
of the effective flow stress at 30% strain. If the saturation value occurred at a lower strain level
or higher strain level, the conclusions of this DOE study might be different. However, this
level of kinematic hardening is deemed physically consistent with substructure formation in
pure metals and considerably less than that which might be produced in complex two-phase
microstructures (cf. Kocks (1976, 1987)). For non-zeroα, the flow rule in equation (14) is
used and in the DOE represents ‘yes’. When kinematic hardening is ‘no’ in table 1,α = 0.

It is well known that a certain degree of kinematic hardening (Bauschinger effect) is
introduced by virtue of the orientation dependence of grains and compatibility requirements
among them in polycrystal plasticity theory. However, this is a highly transient effect that
occurs over small cumulative plastic strain following a strain reversal. More persistent
Bauschinger effects arise from prescription of kinematic hardening at the scale of individual
grains (slip systems), affecting slip-system flow rules. Reversed-loading experiments on single
crystals of both precipitate-strengthened (cf. Jordanet al1993) and pure metals (cf. Mughrabi
1978) exhibit kinematic hardening due to heterogeneous inelastic flow. Precipitates offer a
clear source of the behaviour in the former. Dislocation substructures induce these effects in
the latter. In the latter case, the backstress is induced by the collective effects of interactions
with dislocation structures at higher scales.
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4. Macroscale responses

Certainmacroscaleresponses (attributes) were used to assess the relative importance of the
mesoscalemodel features. Essentially, these responses serve as performance indices or require-
ments at the macroscale. One such macroscale response is the polycrystalline effective (von
Mises) flow stress, which was correlated with the experimental data under free-end torsion con-
ditions based only on the first-order response, i.e.σ eff = √3σ ave

12 . Each of the eight calculations
was correlated with the torsional data and remained at least within 6% of the stress level through-
out the straining period. Table 2 summarizes the effective flow-stress levels at 10% and 50%
strain for the eight calculations and the experimental data to illustrate the close approximations.

Table 2. Effective (von Mises) stress (MPa) from calculations and from experimental torsional
data for OFHC Cu.

Calculation 10% eff. strain 50% eff. strain

1 130 241
2 128 241
3 132 251
4 128 240
5 123 235
6 123 236
7 121 241
8 121 241
Exp. result 123 240

Table A1 in the appendix summarizes the material constants that were used to determine
these stress–strain responses. We note that the material constants are not unique.

Another macroscale response is the plastic spin that is related to texture. We employ
aspects from the orientation distribution function (ODF), which depicts the evolution of texture
as a function of effective strain. The ODF has two components: mean and spread, the mean
being defined by the volume average over the polycrystalline distribution and the spread
(assuming Gaussian distribution) being defined by the standard deviation of the polycrystalline
distribution. Horstemeyer and McDowell (1997) showed how this procedure was used to
relate the pole and distribution of texture to the mean and spread of plastic spin and the work-
hardening rate. Other macroscale responses of interest were the polycrystalline elastic moduli
and development of polycrystalline axial extension in free-end shear which were determined
by the volume averages of the single-crystal quantities.

From theL8 array, we may write

[R] = [P ][A] (15)

where [R] is the response matrix, [A] is the output matrix and indicates the relative influence
of the crystal plasticity model feature, and [P ] is the parameter matrix. Each is denoted by

[R] =



R1

R2

R3

R4

R5

R6

R7

R8


[A] =



2A1

A2

A3

A4

A5

A6

A7

A8


[P ] =



+1 +1 −1 −1 −1 −1 +1 +1
+1 +1 −1 −1 +1 +1 −1 −1
+1 +1 +1 +1 −1 −1 −1 −1
+1 +1 +1 +1 +1 +1 +1 +1
+1 −1 −1 +1 −1 +1 −1 +1
+1 −1 −1 +1 +1 −1 +1 −1
+1 −1 +1 −1 −1 +1 +1 −1
+1 −1 +1 −1 +1 −1 −1 +1


(16)



262 M F Horstemeyer et al

The parameter matrix [P ], shown in equation (16), has an equal number of occurrences in
each column. For each level within a column, each level within any other column will occur
an equal number of times as well. This introduces the statistical independence or balance into
the orthogonal array. If the results, [R], associated with one level change to another level,
then the parameter from one level to another has a strong impact on the macroscale response
being considered. Because different levels occur an equal number of times, an effect on the
macroscale response by the other parameters is cancelled out. Hence, the−1’s and +1’s in
matrix [P ] are simply used to express the effect of the two different levels.

The values for theR-matrix, for example, for torsional effective stresses are given in
table 2. The mean of the results from the DOE analysis is given byA1. A2 is the output from
the eight calculations under the parameter related to the slip-system-level kinematic hardening.
A3 reflects influence from latent hardening.A4 depends on the type of hardening model that was
used.A5 relates to the type of intergranular constraint used.A6 relates to the single-crystal
elastic moduli that were used. DOE outputsA7–A8 are the outputs related to the second-
order interaction of parameters. These second-order responses turned out to be negligible in
the analysis. Note thatA1–A8 do not have physical significance in an absolute sense, just
statistical significance in expressing the relative influence of associated model features on the
response matrix,R. Furthermore, we note that we are assuming a statistical linear dependence
of terms so only two levels of each parameter were chosen. If more levels are desired, another
orthogonal array would be necessary and a higher-order statistical assumption would have to
be made.

The matrix of outputs, [A], can be determined by inverting the parameter matrix, [P ].
In the parameter matrix,−1 is placed where kinematic hardening is ‘no’ (recall table 1).
The same is done when latent hardening is ‘1.0’, when the hardening model is AF, when the
intergranular constraint is FEM, and when the elastic properties are anisotropic. In contrast,
+1 is placed in the table when the kinematic hardening is ‘yes’, and so on. Since the response is
determined from the finite-element calculations and is hence known, the DOE outputsA1–A8

can be determined from equation (16). These outputs are then used to quantify the parametric
effects of the model features.

4.1. Example: effective stress at 50% effective strain

For the sake of brevity, an example is presented of a macroscale response (effective flow stress)
to illustrate the methodology, corresponding to 50% strain. The details of the determination
of the output values for the other macroscale responses will not be discussed later in the
paper, only the results. For the effective stress response at 50% strain, the kinematic output
levelA2 = 20, the latent hardening output levelA3 = 20, the hardening model output level
A4 = 2, the intergranular constraint output levelA5 = 10, and the elastic properties output
levelA6 = 12. Since these values arise relative to each other, the values were normalized to
the largest value among them in order to assess the relative level of influence of each parameter.
Table 3 shows the values for the outputs when examining the effective stress level. Constant
A1 is the average and is not relevant to our parametric study so is not included in the discussion.

Hence, the most influential model features at 50% effective strain, when examining the
effective stress, were the kinematic hardening and latent hardening. The gradation that will
be used to describe the magnitude of influence is: (a) primary: 85–100%; (b) secondary:
60–85%; (c) tertiary: 30–60%; (d) minor: 20–30%; (e) negligible: 0–20%.

Since the kinematic hardening and latent hardening have the highest statistical value, they
are the primary influence on the effective stress at 50% strain. The intergranular constraint and
effects of elasticity have a tertiary influence, and the effect of the hardening model is negligible.
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Table 3. Output values for effective flow stress at 50% effective strain.

Constant Normalized
Parameter value value

Kinematic hardening,A2 20 1.00
Latent hardening,A3 20 1.00
Hardening model,A4 2 0.10
Intergranular constraint,A5 10 0.50
Elastic properties,A6 12 0.60

Figure 1 shows the relative influences for the effective stress at 10% and 50% strain. These two
levels were chosen to illustrate the evolving influence as deformation proceeds from ‘small’
finite strains to ‘moderate’ finite strains.

5. Discussion of results

There are two perspectives from which to view these data in this study. One perspective views
how each parameter affects the different macroscale responses. The other perspective examines
how each macroscale response is affected by the parameters. We shall discuss the parameter
paradigm first in figures 1–5. We shall then discuss the macroscale response paradigm in
figures 6–12.

5.1. Parameter discussion

Figure 1 summarizes the normalized results from DOE study for the influence of the
intergranular constraint on the macroscale responses. As one can see, the intergranular
constraint was the primary influence at 10% strain on the spread of the work-hardening rate,
the spread of plastic spin, elasticity, and axial extension. Because the constraint assumption
relaxes or confines the diffusion of the texture as deformation proceeds, we see a strong effect
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Figure 2. DOE influence of kinematic hardening on responses at 10% and 50% effective strain.

on the distribution spread of the plastic spin and work-hardening rate. These two macroscale
responses are directly a function of the texture evolution. The influence of the intergranular
constraint is lessened as deformation proceeds.

The kinematic hardening had the most influence over the macroscale responses, more than
any other feature of the model at both levels of strain examined (10% and 50% ). Figure 2
shows that primary influence over flow stress, axial extension, plastic spin, elasticity at a lower
strain, and plastic spin spread at a higher strain. It had much less influence on the mean and
spread of the work-hardening rate. This is interesting since the kinematic hardening saturated
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Figure 4. DOE influence of latent hardening on responses at 10% and 50% effective strain.

at 30% strain indicating its continued influence on the memory of the material up to 50% strain
and even being the primary influence at that point. This was also observed in the planar 2D
DOE analysis of Horstemeyer and McDowell (1997).

The hardening rule had a primary influence on the work-hardening rate, mean plastic spin,
and axial extension at 10% strain as shown in figure 3. The influence of the hardening rule
changed at 50% strain. It still had a primary influence on the work-hardening rate, but had a
negligible influence on the mean plastic spin and axial extension. Otherwise at 50% strain, it
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had a primary influence on the spread of plastic spin and work-hardening rate. This is interesting
because it indicates that the hardening rule affects texture which in turn influences these two
macroscale quantities. The hardening rule had negligible effects on the polycrystalline elastic
moduli and surprisingly on the flow stress.

Figure 4 shows that the latent hardening parameter had a primary influence on the plastic
spin throughout deformation. It had an increasing influence from negligible to primary on
the macroscale flow stress from 10% strain to 50% strain. By contrast, it had a decreasing
influence from primary to negligible on the axial extension. On the hardening rate, elasticity,
and spread of plastic spin the latent hardening influence was minimal to negligible.

The strongest influence on the polycrystalline elastic moduli was determined by whether
the single-crystal elastic properties were anisotropic or isotropic, as shown in figure 5; this also
had a primary influence on the plastic spin at 10% strain. It also had a secondary influence
on the axial extension at 10% strain but decreased at 50% strain. Otherwise, it had minor-to-
negligible effects on the other macroscale responses.

5.2. Macroscale response discussion

The macroscale effective flow stress was determined by taking the volume average of the in-
plane shear component and then applying the von Mises criterion, i.e.σ eff = √3σ ave

12 . Figure 6
shows that at 10% and 50% effective strain, the kinematic hardening had the primary influence.
At 10% strain, every other parameter had a negligible influence. At 50% strain, although the
kinematic hardening had a primary influence on the flow stress, it saturated at 30% strain. This
indicates a memory effect still influencing the material. At 50% strain, we also see that latent
hardening had a primary influence whereas at 10% strain, it was negligible. Elasticity and
intergranular constraint increased in influence to a tertiary level as the applied deformation
increased to 50% strain. The influence of the hardening rule was negligible.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

parameters

no
rm

al
iz

ed
 D

O
E

 f
lo

w
 s

tr
es

s 
re

sp
on

se

10%

50%

Kinematic
Hardening

Latent 
Hardening

Hardening Rule Intergranular
Constraint

Elasticity

strain

Figure 6. DOE polycrystalline flow stress results showing the relative influence of mesoscale
parameters at 10% and 50% effective strain.



DOE for model selection 267

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

parameters

no
rm

al
iz

ed
 D

O
E

 w
or

k 
ha

rd
en

in
g 

ra
te

 r
es

po
ns

e

10%

50%

Kinematic 
Hardening

   Latent 
Hardening

Hardening Rule Intergranular 
Constra

Elasticity

strain

Figure 7. DOE polycrystalline mean work-hardening rate results showing the relative influence of
mesoscale parameters at 10% and 50% effective strain.

Figures 7 and 8 show the responses of the mean and spread of the work-hardening rate as a
function of the parameters at 10% and 50% strain. The polycrystalline work-hardening rate is
defined by∂σ eff/∂εeff . The hardening rule was the dominant influence on the mean and spread
of the work-hardening rate. Interestingly, figures 7 and 8 show decreases in influence from
latent hardening, intergranular constraint and elasticity from mainly a tertiary to a negligible
influence as the applied deformation proceeded from 10% to 50% strain. The kinematic
hardening had a negligible influence on the mean and spread of the work-hardening rate at
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Figure 9. DOE polycrystalline mean plastic spin results showing the relative influence of mesoscale
parameters at 10% and 50% effective strain.

50% strain, but had a tertiary influence on the spread of the work-hardening rate at 10% strain.
Figure 9 shows the responses of the mean plastic spin as a function of the parameters at

10% and 50% strain. The plastic spin of each grain was computed as follows,

W p =
N∑
i=1

γ̇i
(
si ⊗mi

)
anti . (17)
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Figure 11. DOE polycrystalline elastic shear moduli results showing the relative influence of
mesoscale parameters at 10% and 50% effective strain.

Since the macroscopic shear was imposed in the 1–2 direction, onlyW
p
12 has been reported.

The mean plastic spin is the numerical average of the individual grain values. Surprisingly,
all the parameters had a relatively similar influence on the mean plastic spin as illustrated in
figure 9. At 10% strain, the kinematic hardening, latent hardening, hardening rule, and elastic
anisotropy all had a primary influence. The intergranular constraint had a tertiary influence at
10% strain. This indicates a tight coupling of the equations in determining the plastic spin.
At 50% strain, the intergranular constraint and latent hardening had primary influences, as
the influence of the kinematic hardening decreased to a secondary level. The influence of the
elastic anisotropy decreased from a primary to a minor influence from 10% to 50% strain, and
the hardening rule decreased from a primary to negligible influence from 10% to 50% strain.

Figure 10 shows that the primary influence on the spread of the distribution of plastic spin
at 10% strain was the intergranular constraint with all the other factors being negligible. At 50%
strain, the kinematic hardening and hardening rule surprisingly had primary influences. The
intergranular constraint influence decreased to a tertiary level at 50% strain. Latent hardening
and elasticity had negligible influences on the spread of plastic spin at 10% strain but increased
to tertiary levels at 50% strain.

Figure 11 shows the responses of the polycrystalline elastic shear modulus as a function
of the parameters at 10% and 50% strain. The polycrystalline elastic moduli were determined
from the volume average over all the grains. As might be expected, the single crystal elastic
moduli had a strong influence on the polycrystalline elastic moduli throughout the deformation,
but more so at 50% strain because of the deformation-induced anisotropy. At 10% effective
strain, the intergranular constraint and kinematic hardening played a primary role but lost
influence to only a minor role at 50% strain. The latent hardening and hardening rule had
negligible effects on the polycrystalline elastic shear modulus.

Figure 12 shows the responses of the axial extension as a function of the parameters at
10% and 50% strain. The polycrystalline axial extension developed during free-end shearing
was determined by the volume average of the single-crystal axial extension. Note that all
the parameters had a primary influence on the axial extension at 10% strain, but only the
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Figure 12. DOE polycrystalline axial extension results showing the relative influence of mesoscale
parameters at 10% and 50% effective strain.

kinematic hardening retained a primary influence at 50% strain. At 50% strain the other
parameters decreased such that they had a negligible influence.

The results in Figure 12 are similar to those for the plastic spin. Axial extension for
free-end shear is a second-order effect and would be a result of the texture development like
the plastic spin. This result is critical when considering the modelling of secondary responses,
such as axial extension in free-end shear or axial stresses in fixed-end shear, with macroscale
unified-creep-plasticity models. The axial stresses under fixed-end torsion and axial strains
under free-end torsion have been attributed to texture effects (Harrenet al 1989).

5.3. Comparison of planar double-slip with three-dimensional results

Horstemeyer and McDowell (1997) performed a similar DOE analysis in a planar double-slip
context, and it is instructive to compare those results with these 3D results. Both studies
showed that the intergranular constraint and kinematic hardening had the most influence on
the macroscale parameters, but the 3D study showed a much stronger influence from latent
hardening on the macroscale responses than the 2D study. This is somewhat surprising
considering the differences in the two formulations. First, there is the obvious difference
that the 2D double-slip formulation overconstrains the plasticity framework more than the 3D
framework. Another difference was that the boundary condition in the 2D study was fixed-end
shear while in the 3D study it was free-end shear. A self-consistent method was also used in
the 2D study to relax the Taylor constraints but the finite-element method was used in the 3D
study. Finally, the form of one of the hardening rules changed from the Chang–Asaro (Chang
and Asaro 1981) hardening rule to the Armstrong–Frederick (Armstrong and Frederick 1966)
hardening-recovery format. Even with these differences, the conclusions in the two studies
were very similar with qualitative differences, only occurring in relation to the influence of
latent hardening.
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6. Summary

For a given materialandfor the given range of model features employed in this study, the DOE
methodology has quantified the relative influence of different selected elements of standard
polycrystal plasticity theory as a function of deformation level and path. Within this context,
for the specific mesoscale constitutive relations selected for the study some key findings include
the following.

• The introduction of kinematic hardening at the scale of individual grains (slip system)
demonstrated a strong influence on the polycrystal flow stress, mean and spread of plastic
spin, polycrystalline elastic shear modulus, and axial extension. The kinematic hardening
had minor-to-negligible influences on the mean and spread of the work-hardening rate.
In spite of the fact that kinematic hardening was introduced as a short range transient
that saturated at 20% of the effective flow stress after 30% effective strain in monotonic
deformation, it still had influence up to 50% strain.
• The intergranular constraint had a strong influence on the spread of the polycrystal work-

hardening rate and plastic spin. At 10% strain, the intergranular constraint had a primary
influence on the polycrystalline elastic moduli and on the axial extension.
• The choice of latent hardening had a greater influence in the 3D study than in the previous

2D study of Horstemeyer and McDowell (1997). The latent hardening played a primary
role in the polycrystalline flow stress, mean plastic spin, and axial extension. It had a
tertiary role in the mean and spread of the polycrystalline work-hardening rate and spread
of plastic spin.

The range of constitutive model elements was not exhaustive in this study. For example,
the results were indifferent to latent hardening for values ofq = 1 or q = 1.4 for the
Peirce–Asaro–Needleman formulation for both texture and stress–strain behaviour in shear
and compression for OFHC Cu. Of course, the influence of this model in comparison with a
radically different formulation of latent hardening (cf. Weng (1987)) might prove to be quite
significant. Furthermore, a material such as aluminum, which has a lower hardening rate than
copper and is more elastically isotropic, may generate different results.

In this study, only shear loading paths were considered. For reversed yielding or changes
of the deformation path even more demanding, discriminatory requirements are placed on the
elements of the constitutive models. The DOE methodology could be used for this type of
loading path as well as a straightforward extension.

We emphasize that this DOE methodology provides the relative influence or the sensitivity
of an aggregate performance index or response function to a range of mesoscale models for
evolving structure and its effects. As such, the methodology may be useful as part of an overall
strategy for optimization of constitutive laws that covers not only parameter estimation, but also
the objective selection of the forms of the various elements such as hardening and constraint
laws. Polycrystal plasticity is a good example of a nonlinear constitutive law with multiple
sources and scales of nonlinearity. Generally, models that attempt to bridge vastly different
length scales exhibit the same kind of amenability to the DOE approach. The results are
also useful in guiding the disposition of effort to improve certain elements in order to achieve
enhanced description. For example, if the precise form of the slip-system hardening rule does
not significantly influence the macroscale average response function, then there is little impetus
to refine it further, unless the form (e.g. dependent variables) is radically different. This sort
of information is of an entirely different character to that offered by parameter optimization
schemes, where the objective is to find a set of parameters that minimizes some error norm
over the space of desired performance objectives for aspecificconstitutive model structure.
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Appendix

The following table summarizes the elastic constants and plastic constants that were used for
each of the parameters. Note that the plastic constants were determined by correlation with
stress–strain curves from torsion experiments for OFHC Cu.

Table A1. Material constants for the eight calculations.

Constant Units 1 2 3 4 5 6 7 8

C1 GPa 168.4 210 168.4 210 210 168.4 210 168.4
C2 GPa 121.4 100 121.4 100 100 121.4 100 121.4
C3 GPa 75.5 55 75.5 55 55 75.5 55 75.5
M – 10 10 10 10 10 10 10 10
h0 MPa – – 72 72 133 133 – –
8 – – – 11 11 21 21 – –
γ0 – – – 0.002 0.002 0.02 0.02 – –
A MPa 100 100 – – – – 123 120
B – 1.02 1.02 – – – – 1.43 1.43
lhr – 1.0 1.0 1.4 1.4 1.0 1.0 1.4 1.4
Csat MPa 18 18 18 18 18 18 18 18
Crate – 18.8 18.8 18.8 18.8 18.8 18.8 18.8 18.8

αi = 0 is an initial condition.

References

Armstrong P J and Frederick C O 1966CEGB ReportRD/B/N, p 731
Asaro R J 1983J. Appl. Mech. 50921–34
Bassani J and Wu 1991Proc. R. Soc. A 43521–41
Berveiller M and Zaoui A 1979J. Mech. Phys. Solids26325–44
Bishop J F W andHill R 1951Phil. Mat. 7(42) 1298–307
Box G E, Hunter W G and Hunter J S 1978Statistics for Experimenters(New York: Wileyet al)
Budiansky B and Wu T Y 1962Proc. 4th US National Congress of Applied Mechanicsp 1175
Chang Y W and Asaro R J 1981Acta Metall. 29241–57
Cohen M 1976,Mater. Sci. Engng. 253
Cuitino A M and Ortiz M 1992Modelling Simulation Mater. Sci. Eng.1 225–63
Coleman B D and Gurtin M E 1967J. Chem. Phys.47597
Dawson P R 1987Int. J Solid Structures23(7) 947–68
Dawson P R, Beaudoin A J and Mathur K K 1994 Numerical predictions of deformation processes and the behavior of

real materialsProc. 15th Riso Symposium on Materials Science (Riso National Laboratory, Roskilde, Denmark)
pp 33–44

Eshelby J 1957Proc. R. Soc. A 241376–96
Fisher R A 1935aStatistical Methods for Research Workers(Oliver and Boyd)
——1935bThe Design of Experiments(Oliver and Boyd)
France L K, Hartley C S and Reid C N 1967Metal Sci. J. 1 65–70
Franciosi, Berveiller M and Zaoui A. 1980Acta Metall. 28273–83



DOE for model selection 273

Hansen N and Jensen J D 1991 Anisotropy and localization of plastic deformationProc. 3rd Symposium on Plasticity
and Its Current Applicationsed J P Boehler and A S Khan, pp 131–4

Harren S, Lowe T C, Asaro R J and Needleman A 1989Phil. Trans. R. Soc. A 238443–500
Havner K S 1982Mech. Mater. 1 97–111
Hill R 1965J. Mech. Phys. Solids1389–101
Hill R and Rice J R 1972J. Mech. Phys. Solids20401–13
Honneff W G and Mecking H 1978Texture of Materialsed G Gottstein and K Lucke (Berlin: Springer) pp 265–75
Horstemeyer M F and McDowell D L 1997 Using statistical design of experiments for parameter study of crystal

plasticity modeling features under different strain pathsSandia National Laboratories ReportSAND96-8683
——1998Mechanics of Materialsat press
Hughes D A 1995Proc. 16th Riso International Symposium (Roskilde, Denmark)ed N.Hansenet al
Hutchinson J W 1970Proc. R. Soc. A 319247–72
——1976Proc. R. Soc. A 348101–27
Jordan E H and Walker K P 1992J. Engng Mater. Tech. 11419–26
Jordan E H, Shi S and Walker K P 1993Int. J. Plasticity9 119–39
Kalidindi S R and Anand, L. 1991Advances in Finite Deformation Problems in Materials. Processing and Structures

1253–14
Kalidindi S R, Bronkhurst C A and Anand L 1992J. Mech. Phys. Solids40(3) 537–69
Kocks U F 1970Metall. Trans. 1 1121
——1976J. Engng Mater. Tech. 9876–85
——1987Unified Constitutive Equations for Creep and Plasticityed A K Miller (New York: Elsevier) ch 1, pp 1–88
Kroner E 1961Acta Metall. 9 155
Lin T H 1957J. Mech. Phys. Solids5 143
Lowe T C and Lipkin J 1990 Analysis of axial deformation response during reverse shearSandia National Laboratories

ReportSAND90-8417
McDowell D L, Miller M P and Bammann D F 1991 Some additional considerations for coupling of material and

geometric nonlinearities for polycrystalline metalsProc. MECAMAT ’91 (Fontainebleau, France)
Miller M P 1993PhD ThesisGeorgia Institute of Technology
Mughrabi H 1978Mater. Sci. Engng33207–23
Nakada Y and Keh A S 1966Acta. Metall. 14961–73
Nair V N 1992Technometrics34(2) 127–61
Nair V N and Shoemaker A C 1990The Role of Experimentation in Quality Engineering: A Review of Taguchi’s

Contributions, Statistical Design and Analysis of Industrial Experimentsed S Ghosh (New York: Marcel Dekker)
pp 247–77

Nelder J A and Lee Y 1991,Applied Stochastic Models and Data Analysis7 107–20
Olson G B 1997 Advanced materials and processesASM News 772–9
Phillips A and Das P K 1985Int. J. Plasticity1 89
Phillips A and Gray G 1961J. Basic Engng Trans. ASME83275
Phillips A and Kasper R 1973J. Appl. Mech. 40891
Peirce D, Asaro R J and Needleman A 1982Acta Metall. 301087–119
——1983Acta Metall. 311951–76
Rashid M M and Nemat Nasser S 1990Comput. Meth. Appl. Mech. Engng94201
Rashid M M, Gray G T III, Nemat Nasser S 1992Phil. Mag. A 65(3) 707–35
Rice J R 1971J. Mech. Phys. Solids9 433–55
Taguchi G 1974Shaishin Igaku (The Newest Medicine) 9 806–13
——1986Introduction to Quality Engineering(Tokyo: Asian Productivity Organization)
——G 1987System of Experimental Designvols I and II (New York: UNIPUB)
Taylor G I 1938J. Inst. Metals62307
Taylor G I and Elam C F 1923Proc. R. Soc. A 102643–67
Weng G J 1987Int. J. Plasticity. 3 315–39


