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Abstract 

 A previously developed spectrum model for linear viscoelastic behavior of solids is used to 

describe the rate-dependent damage growth of a time dependent material under cyclic loading.  

Through the use of the iterative solution of a special Volterra integral equation, the cyclic strain 

history is described.  The spectrum-based model is generalized for any strain rate and any 

uniaxial load history to formulate the damage function.  Damage evolution in the body is 

described through the use of a rate-type evolution law which uses a pseudo strain to express the 

viscoelastic constitutive equation with damage. The resulting damage function is used to 

formulate a residual strength model. The methodology presented is demonstrated by comparing 

the peak values of the computed cyclic strain history as well as the residual strength model 

predictions to the experimental data of a polymer matrix composite.   
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1. Introduction 

 Materials such as fiber reinforced polymer composites exhibit time dependent behavior, due 

primarily to the matrix component. The viscoelastic response from the polymer component can 

become accelerated due to a combination of both creep and cyclic loading which the material 

experiences in cases like tension-tension fatigue [Vinogradov 2001].  Even at low loads (well 

below the ultimate tensile stress) damage in the form of matrix cracks and fiber breaks occurs at 

a relatively low number of cycles [Talreja 1987; Harris 2003; Case and Reifsnider 2003; 

Reifsnider 1991].  Therefore, it is important to develop a damage model that also includes the 

rate dependent nature of the viscoelastic material subjected to cyclic loading.   

 Damage modeling of composites is not an easy task, given the evolution of various damage 

mechanisms (matrix cracking, fiber breakage, interfacial debonding, transverse-ply cracking, and 

ply delamination) in composite materials [Talreja 1987].  One of the approaches used to deal 

with such diverse damage states is to use a continuous damage variable, which usually relies on 

the concept of effective stress and strain equivalence [Lemaitre 1984; Lemaitre and Dufailly 

1987; Kachanov 1986; Jessen and Plumtree 1991].   The effective stress theory assumes that the 

damage is uniformly distributed, which in fiber reinforced composites, the complex damage 

occurs in a distributed manner with the damage mechanisms occurring in diffused areas.  The 

effective stress theory is used in this study to introduce the damage variable S which is defined to 

be S = 0 for an undamaged material; as damage progresses, the load bearing area decreases and 

the net stress approaches infinity with the damage variable approaching its largest value (S=1) 

[Lemaitre 1984; Kachanov 1986; Stigh 2006].    

 Having established the concept of the damage parameter, the rate dependent nature of the 

material must be integrated into the model.  The effects of both viscoelasticity and damage have 



been addressed in several studies [Schapery 1980a, 1980b, 1990, 1994; Weitsman 1988, Kim 

and Little 1990; Park, et.al. 1996; Schapery and Sicking 1995].  To develop a damage model, 

Schapery [Schapery 1980a, 1984] formulated the modified elastic-viscoelastic correspondence 

principle, which is applicable for both linear and nonlinear materials.  Using this formulation, he 

was able to express the viscoelastic constitutive equation in a form similar to that of an elastic 

equation through the use of pseudo variables.  Schapery’s approach is used in this paper to 

represent the viscoelastic nature of the composite through the use of a pseudo strain, which 

contains the effect of the convolution integral (hereditary effects). The damage state is then 

described by a continuous damage variable that uses the pseudo strain response of the composite 

laminate.   

 The primary objective of this study is to establish an alternative methodology in the study of 

viscoelastic behavior which can be used in the prediction of degrading properties and residual 

strength.  A constitutive model for isotropic homogenous viscoelastic solids using a distribution 

function developed earlier [Sullivan 2006] is first reviewed and then extended to include cyclic 

loading.  The constitutive model as a function of the pseudo strain is then used to form the 

continuum mechanics damage parameter (S) from which a residual strength model is proposed.  

Experimental details consisting of the cyclic response and residual strength are given for a quasi-

isotropic polymer matrix composite material.  As an initial demonstration of the methodology, 

the composite laminate is regarded as an effective homogenous continuum and the predictions 

are compared to the experimental data.   

 
2.  Spectrum-based viscoelastic model for creep and fatigue 

A previously developed spectrum model [Sullivan 2006] for viscoelastic materials has been 

extended to include fatigue loading so that the effect of fatigue – creep interaction can be 



included.  For the sake of completeness, a brief overview of the continuous spectrum model is 

given. 

Beginning from the Boltzman-Volterra theory, the constitutive equation describing a linear 

isotropic viscoelastic solid without damage in Cartesian coordinates is given as 
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where a repeated index implies a sum and εrr is the trace of the strain tensor ε.  The parameters 

eλ and eµ are the Lame' elastic constants and λv(t) and µv(t) are the viscoelastic functions of the 

material.  Since all properties of importance can be expressed through the use of the Lame´ 

parameters, the Lame´ functions λv(t) and µv(t) must be determined.  A form of the Lame´ 

functions is formulated as [Eringen 1967], 
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where φ(α), called the relaxation spectrum, satisfies two criteria: 

( ) ( ) 10 ≤∞φ≥αφ     (3) 

and for ease of computation and demonstration in this study, only one spectrum function has 

been taken, i.e., ( ) ( ) ( )αφ=αφ=αφ 21 .  The choice of the distribution function is made when two 

additional criteria are imposed.  First, the function must have a monotonic behavior and secondly 

it must reduce, in a limiting procedure to the delta function, giving rise to the constants appearing 

in both Kelvin-Voigt and non Kelvin-Voigt materials.  Satisfying all the imposed criteria, the 

resulting function used for this study is   
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with materials constants n and no having dimension of [1/sec].  In the distribution function 

selection process, the behavior of the chosen spectrum function φ(α) has been compared to the 

behavior of other distributions such as the Poisson, Maxwell or the Chi functions.  It is noted that 

when compared to the latter three, φ(α) can be used for all times [-∞, +∞] and it also most 

closely mimics the behavior of most viscoelastic materials because its response closely follows a 

normal probability distribution function.  

 Having selected the spectrum function φ(α), the Lame´ parameters λv(t) and µv(t) can be 

determined and all properties and responses can be expressed for viscoelastic materials.  The full 

development of the time dependent response and properties using the given spectrum function 

can be found in Ref. [21]. The resulting strain as a function of time is determined to be 
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with the mean strain σm, the amplitude A, ω = 2 π f, and f  being the frequency of the test in 

cycles per second.   Equation (5) is a Volterra integral equation and it is solved by the method of 

iteration, which will be discussed in Section 7.  Having the expressions for the Lame´ functions 

λv(t) and µv(t), the time dependent tensile modulus is obtained as  
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and Ee is the initial elastic modulus of the material.  In this paper, the viscoelastic parameters n 

and no are determined by using the strain data at the superimposed stress and using Eq. (5) for 

the constant stress case for which σ(t) = σmean = σo.  Once these parameters have been computed, 

the strain response for the cyclic loading { })t(sinA1)t( m ω+σ=σ is generated.  This is the first 

validation step as the peak values of the computed response are compared to the measured peak 

strain for a fatigue test (see Fig. 4).  Using this technique, complete analytical expressions for the 

strain response along with properties such as the modulus are obtained. 

 
3.  The Constitutive Damage Model Using Pseudo Strain 

 Attention is now turned to developing a methodology to incorporate damage into the linear 

viscoelastic model.  Taking guidance from previous work [Park et.al. 1996; Schapery 1984], an 

alternate way of expressing the time dependency of viscoelastic materials is through the use of 

pseudo variables.   Originally proposed by Schapery, the methodology involves the use of 

pseudo parameters which do not necessarily represent physical quantities such as strains and 

stresses, but which are useful in transforming the viscoelastic stress-strain relationships into 

elastic-like equations [Schapery 1984, 1990].  The concept of pseudo strain is developed through 

the equation 

τd
τd
εd

)τt(E
E
1)t(ε

t

0

11

R

R ∫ −=   (8) 



where 

  )t(Rε = pseudo strain  E(t) = modulus 
)t(11ε = actual strain  RE = reference modulus 

   
Once the pseudo strain has been defined by Eq. (8), the constitutive law for a viscoelastic 

material can be expressed in a form similar to Hooke’s law of linear elasticity for all times as 

  )t(εEσ(t) R
R= .     (9) 

The simplicity of this description is the integral form of the constitutive equation has now been 

absorbed by the pseudo strain which contains the memory aspect of the material.  The 

constitutive law for damage using the pseudo strain can also be obtained by considering the 

simplest form of the free energy of deformation (Helmholtz).  The pseudo strain energy density 

function RW can be defined as a function of the pseudo strain and a damage variable S as  
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where M(S) is a constitutive function of damage.  The components of the stress may be obtained 

by taking the first derivative of RW with respect to the pseudo strain, thereby obtaining  
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The constitutive function M(S) is also a function of time since the damage parameter S is a 

function of time, i.e., [ ] )t(M)t(SM)S(M == .  As a first attempt, using the relaxation modulus 

(for the stiffness function M(t)) as defined by Eq. (7)) in Eq. (8), the pseudo strain can be written 

as 

{ } { } 







−+−






 −= ∫

t

0

11
o1111

R

eR τd
τd
εd)τt(n

π
m)0(ε)t(ε

2
m1

E
E

)t(ε . (12) 



It can be seen from Eq. (12) that the time dependent strain response must be known to formulate 

the pseudo strain, which is a necessary parameter in the development of the damage model 

(Section 4).  The behavior of the pseudo strain is shown in Fig. 4. 

4.  The Damage Law 

A continuum damage mechanics approach is used to formulate the damage function.  In 

this paper, the damage parameter S is defined through the use of an effective stress or net stress 

σ′  [Kachanov 1986; Stigh 2006] as  

S1−
σ

=σ′      (13) 

where σ is the applied stress.  Essentially, the net stress is the true stress because the growth of 

damage decreases the load bearing area and the net stress is based on this reduced area or “net 

area”.  It can be seen from Eq. (13) that for an undamaged material, S = 0, and the effective 

stress equals the applied stress.  As S approaches 1, the load bearing area decreases and the 

effective stress tends to infinity.  To describe the development of damage, Kachanov’s damage 

growth law [Kachanov 1958] is used as 
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where C and η are material constants to be determined.  From Eq. (14), it is observed that the 

damage growth will always be positive for a tensile-tensile fatigue loading, as is considered in 

this study.  This damage description assumes uniform damage and uniform damage growth.  

Upon integration, the damage function becomes 
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The rupture time tRS can be determined by evaluating Eq. (15) for the case of constant loading, 

i.e., creep [Stigh 2006], under the condition that at failure S(t) =1, as given by  
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Using this equation, the constants C and η can be determined from creep-rupture test data.  

Solving Eq. (15) for the term 1)(ηC + , and using the definition of stress from Eq. (11), the 

damage function is now expressed in terms of the pseudo strain as  
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Correlated with a residual strength model, the damage function in Eq. (17) is useful in 

establishing the level of damage in a material due to cyclic loading. The behavior of this function 

is shown in Fig. 5a. 

 
5.  The Residual Strength Model 

 It is observed that the damage function inherently contains information about the degradation 

of strength in the material and its composition is seen to contain a “pseudo stress”, i.e., 

)t()t(M Rε . Taking guidance from the results of the damage function in Eq. (17), a form for the 

remaining or residual strength is proposed here by forming a factor Fr(t) as given by 
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for a time in the range [0,tf] where tf is some final time (not necessarily the rupture time) and the 

parameter β is to be determined by comparison with either the experimental or the empirical data.  

This form is similar to empirical residual strength models based on statistical distributions.   

It is seen that when η approaches infinity in Eq. (18), the value of the residual strength factor Fr 

is unity, indicating an elastic material, i.e., no damage.  Since the proposed residual strength 

function given in Eq. (18) is normalized with respect to the initial strength of the material XT, the 

residual strength )t(σR is formulated as 

   )t(FrX)t(σ TR = .     (19) 
 

A flow chart depicting the methodology is shown in Figure 1. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Fig. 1.  Flow Chart for Viscoelastic Continuum Damage Mechanics Modeling. 



6. Experimental Details 

Material Description  

The composite material, for which both fatigue to failure and residual strength data were 

available, is an E-glass woven roving in a vinyl ester resin manufactured by the Vacuum 

Assisted Resin Transfer Molding (VARTM) process.  Details regarding the material system are 

given in Table 1.  The quasi-isotropic ply orientation of the composite laminate is denoted by the 

warp fiber direction.  

Table 1.  Material System Details 
Fiber system Vetrotex 324 woven roving E-glass 
Resin system Ashland Derakane 8084 vinyl ester 
Stacking sequence [0/+45/90/-45/0]s 
Coupon size 6 X 25.4 X 150 mm 
Tensile Strength (XT)  (ksi) 50.3 
Tensile Modulus (msi) 3.3 
 

Cyclic Testing 

 Strain data from constant amplitude cyclic testing at 5 Hz and stress ratio (minimum stress/ 

maximum stress) of R = 0.1 at three peak stress values (30 ksi, 22 ksi, and 16.5 ksi) is used to 

demonstrate the procedure previously described.  All loading was performed by applying the 

load in the principal fiber direction (0°).  Peak strain data (strain at the peak stress) and minimum 

strain (strain at the minimum stress) at each cycle is obtained.  Typical response from the 

laminates at the three stress levels is shown in Fig. 2.  Strain at the mean stress level (dotted line) 

is computed by averaging the peak and minimum strain values and henceforth used as the 

response of the material at the superimposed “creep” stress.  The viscoelastic parameters that are 

to be extracted are based on the mean strain.   



Fig. 2.  Cyclic strain data for 
(a) 30 ksi (b) 22 ksi (c) 16.5 ksi. 
 

(a) (b) 

(c) 

7.  Discussion of Results 

 As an initial demonstration of the methodology, the composite laminate is regarded as an 

effective homogenous continuum due to its quasi-isotropic lay-up sequence (c.f. Table 1).  

Additionally, all experimental data is obtained from uniaxial loads applied in-plane along the 

warp fiber direction (0°).  

Determination of the viscoelastic parameters no and n 

The two viscoelastic material parameters no and n are first determined from the mean 

strain data that is regarded as the superimposed experimental creep data.   Knowing the strain 

values at the initial (ti) , intermediate (tm), and the final time (tf), a transcendental equation for no 

is formed which is based on a two-term approximation of Eq. (5) as 
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and    

 εi = initial strain at time t = ti = 0 
 εf = final strain at time t = tf  
 

Several strain values at intermediate times are tried and the value that best fits the 

experimental data is retained.  Strain values, for the three peak stress levels demonstrated here, 

which are used to compute no and n are listed in Table 2.  

 
Table 2.  Viscoelastic modeling parameters. 
Cyclic Peak Stress (ksi) 30  22  16.5  
Normalized strength (Fa) 0.595 0.436 0.328 
Initial strain (εi) 7.327 X 10 -3 4.378 X 10 -3 2.983 X 10 -3 
Intermediate strain (εm ) 8.381 X 10- 3 5.855 X 10 -3 3.788 X 10 -3 
Final strain  (εf) 9.579 X 10- 3 6.705 X 10 -3 4.062 X 10 -3 
no 4.316 X 10- 3 9.196 X 10- 4 2.161 X 10- 4 
m = n/no 0.642 0.839 0.675 
 
 
 Once no is determined, the viscoelastic parameter n is obtained by evaluating Eq. (5) at t = tf 
as 
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This procedure is followed for each mean strain or “creep” response and the viscoelastic 

parameters n and no are determined for each stress value.  The parameters are then substituted 

into Eq. (5) to obtain the analytical “creep” strain history which is compared to the experimental 

data shown in Fig. 3 on a strain vs. log(time) scale.  Also shown in Fig. 3 and in Table 2 is the 

ratio m of the viscoelastic parameters given as 
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for each stress level.   The value of m does not change significantly for each stress regardless of 

the strain response used (peak, mean or minimum) because m is a shape parameter of the 

response curve, thereby representing the time-dependent characteristics of the material. It is also 

noted that m is a very weak function of the stress as it does not change significantly between 

each stress level.  Once the viscoelastic parameters no and n have been determined, the cyclic 

strain response and the modulus E(t) are computed.   

Iterative Solution of the Integral Equation 

 To begin the iterative process for determining the peak cyclic response, the strain is first 

normalized and the time is non-dimensionalized by using  
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Fig. 3.  Mean strain from 
“superimposed” stress 
regarded as “creep” strain for 
peak stress levels of (a) 30 ksi 
(b) 22 ksi (c) 16.5 ksi. 

(a) (b) 

(c) 



Equations (5) and (6) are now written as 
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The integral equation (22a) is solved by iteration in which the zeroth approximation is developed 

by introducing a subsidiary solution 
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and then expressing the zeroth solution as 
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The coefficients α0 and α1 are determined by imposing the known values of 11 ε  at λ = 0 and at λ 

= λf.  It is emphasized here that the previous procedure is used solely for the purpose of obtaining 

the zeroth approximation.  Therefore, the values of α0 and α1 are used only in the zeroth 

approximation and are not material parameters.  Using the solution of Eq. (23) as the zeroth 

solution in Eq. (22a), the successive solutions are obtained by iteration to convergence.   

 Using the above methodology, the cyclic strain history is computed to the selected final time 

for each stress level as shown in Fig. 4.  The inset figure in Fig. 4c is shown to demonstrate the 

sinusoidal response.   As can be seen, good correlation is obtained between the analytically 

obtained values and the measured peak strains until the experimental data shows a marked 

increase for all stress levels.  

 Having generated the cyclic strain, the strain rate can now be computed and the pseudo strain 

can be determined from Eq. (12).  Fig. 4 also compares the behavior of the analytical cyclic 

strain and the pseudo strain.  It is expected for the pseudo strain to be lower than the actual cyclic 

strain because the modulus (E(t)) in the definition of the pseudo strain (Eq. 8), is decreasing with 

increasing cycles.    

 Once the pseudo strain is obtained, the damage parameter S(t) is computed from Eq. (17) .   

It is noted that the spectrum based modulus E(t) is obtained from Eq. (7) which uses the 

viscoelastic parameters that effectively capture the peak response as shown in Fig. 4.  It is 

reasonable to conclude that the peak response contains the degradation of the material. Therefore, 

E(t) is taken to describe the modulus degradation in the material and as a first approximation 

used to represent the constitutive damage function M(t). 

 The damage parameter S(t) is computed and shown in Fig. (5a) and its computation enables 

the correlation of various properties as functions of damage; as a way of quantifying the stiffness 



for a given level of damage, the relaxation modulus computed from Eq. (7) is correlated with the 

time dependent damage factor S and shown in Fig. 5b for the peak stress of 22 ksi. 

(a) (b) 

(c) 

Fig. 4.  Comparison of peak 
experimental, analytical, and 
pseudo strains for (a) 30 ksi (b) 22 
ksi (c) 16.5 ksi.   
 

Fig. 5.  Damage  (a) S(t)  (b) Modulus as a function of damage for peak stress 
of 22 ksi. 

(a) (b) 



Finally, the residual strength is computed using Eq. (19) and Fig. 6 shows the residual 

strength curves normalized with respect to the initial strength (XT) along with the experimental 

data for the 22 ksi (Fa = 0.436) and 16.5 ksi (Fa = 0.328) stress amplitudes; experimental 

residual strength data for the 30 ksi (Fa = 0.595) stress amplitude was not available.   The model 

behavior compares favorably with phenomenological models such as those developed by Case 

and Reifsneider [2003].  Overall, good correlation is obtained between the experimental data and 

the residual strength model. 

Using the technique discussed above, the peak cyclic response and the residual strength of a 

PMC material are predicted.   This prediction is based on the mean strain or “creep” strain data 

of a single cyclic test, as explained earlier. 
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8.  Conclusions 
 
 From an earlier development [Sullivan, 2006], a model to describe the creep response is 

modified to simulate the strain response of a viscoelastic material under cyclic loading.  The 

resulting response is used to calculate the pseudo strain that is used to develop a damage model.  

Based on the results of the damage model, a residual strength function is formulated and 

compared to the experimental data.  The model’s behavior is similar to those of 

phenomenological models.    

 The methodology proposed in this study demonstrates a way to incorporate the material 

behavior of viscoelastic solids and damage growth due to superimposed static and cyclic loads.   

For each peak stress level, the model uses the mean response from a single constant amplitude 

fatigue test to predict the response and the residual strength.  Due to its availability, experimental 

fatigue data for a quasi-isotropic polymer matrix composite laminate, tested in the principal 

material direction, is used for comparison with the analytical solutions.  Although the composite 

was regarded as a continuous medium, acceptable agreement was obtained between the model 

predictions and the measured data, due mainly to its quasi-isotropic construction and its in-plane 

loading.   
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