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Abstract

Materials science simulations are among the leading applications for scientific supercomputing.
Discrete dislocation dynamics (DDD) is a numerical tool used to model the plastic behavior of
crystalline materials using the elastic theory of dislocations. DDD simulations require very long
running times to produce meaningful scientific results. This work presents early experiences and
results on improving the running time of Micromegas, an application code for three-dimensional
DDD simulations. We used open source profiling and tracing tools to analyze the behavior and
performance, as well as to identify the performance bottlenecks of Micromegas. The major per-
formance bottleneck of Micromegas, amounts to ∼73% of the total sequential run time and is
parallelized using OpenMP. Evaluation and validation tests conducted on a Nehalem quad-core
processor show ∼50% improvement in the simulation time for 3-D DDD over 30,000 time steps.
The correctness and accuracy of the scientific data produced by the parallel Micromegas are suc-
cessfully validated against those of the original version.



Chapter 1

Introduction

Computational simulations are a valuable approach in enabling scientists to examine the scientific
phenomenon by providing more information than is available from experimental testing. Research
or production scientific simulation codes are usually ‘legacy’ codes developed over many years
by multi-member teams. Advances in computing systems, however, occur at a much faster rate.
Therefore, there is an ever widening gap between ‘legacy’ scientific codes and the computing
systems they are executed on. This gap can be closed via a ‘performance lift’ approach comprising
various performance optimizations (compiler-based optimization, multi-threaded parallelizations,
etc.). In this work we ‘lift’ the computational performance of Micromegas to the computing levels
of multi-core systems.

Description of the problem
The application code is at the heart of any predictive computational simulations. Micromegas
is a legacy application code used to study the mechanical properties (e.g., plastic deformation) of
systems (e.g., crystalline materials) with a dislocation. A typical stress-strain curve for the study of
the plastic deformation occurring in various crystalline materials under certain amounts of applied
stress is shown in Figure 1. In crystalline materials, plastic deformation results from the collective
interactions, motion and reaction of a high density of dislocations.The complex nature of scientific
phenomena captured by Micromegas, in conjunction with its serial implementation result in very
long running simulations, which, depending on the input parameters, can take up to a month until
they produce the desired information. The desired information is usually in the form of a higher
strain rate such that the simulation exceeds the “linear elastic range” and offers as much insight as
possible about the behavior of the material in the “plastic range”, as illustrated in Figure 1. Using
smaller time-steps may provide more accurate simulations, but it also requires more computations,
taking even more time.

The computational overhead in Micromegas is due to the long-range character of the dislo-
cation stress field. This overhead is distributed between part (1) calculating the interaction force
between the dislocation segments and part (2) handling the reactions between the dislocation cores.
In part (1), called FORCE, the driving force on the dislocation segment is the combination of the
following: the interaction force between dislocations, the self-force [9] and the projection on the
slip system of the applied force. The interaction force between dislocations is calculated using the
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analytical form of [5] transformed for numerical use by Devincre et al [6]. The computation of the
interaction force between dislocations represents the most expensive calculations in the simula-
tion.The computational complexity of calculating the interaction force is O(N2), where the number
of dislocation segments, N, increases during the simulation. Contrary to the molecular dynamics
methodology where the number of atoms is constant, in discrete dislocation dynamics the number
of segments increases with the plastic deformation. The computational efficiency of calculating
the dislocation elastic field can be improved using a multipolar expansion method, also called the
Greengard algorithm [13][30][28]. Using this method, the complexity is reduced from O(N2) to
O(N), with an error of 0.1%. Even in this case, however, the simulation was still limited to less
than 0.5% of the plastic deformation [32][7].

Figure 1.1: Typical stress-strain curve for the study of plastic deformation. Magnitude of stress at
which appreciable deformation takes place without any appreciable increase in the applied stress
(http://www.srs.org/professionals/glossary/biomechanics.php)

In part (2), called UPDATE, handling the reactions between dislocations requires powerful
computational resources for operations of a different type than the ones used in calculating of the
interaction forces between dislocations. This is due to the fact that the handling is not based on
analytical formulae. A specific algorithm is used to perform an exhaustive search for dislocation
segments present in the area swept by the moving segment. Whenever segments are detected in
that area, a series of different possible reactions involving the moving segment and the obstacle
segment are tested, and the one with the lowest energy will be formed. The characteristics of the
dislocation segment are then updated and the resulting plastic strain rate is calculated accordingly.
The computational complexity of this part of the code is O(N2).
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Motivation
The performance of Micromegas is influenced by the parameters of the problem, which, unfortu-
nately evolve during the course of the simulation as illustrated in Figure 2. The evolving nature
of the application is due to the fact that N (total number of segments), and ND (the number of
moving segments with length greater than zero) take different values after every simulation time
step, following an increasing trend as illustrated in Figure 12 (explained later in the document).
Therefore, the problem size and required computational resources become known only at the be-
ginning of a new time step. The number of time steps in a typical simulation run ranges from 104

to 109 steps. Additionally, small source code changes can lead to significant performance changes,
including performance degradation. Thus, analyzing and improving the performance of 3-D DDD
simulations across a variety of existing computing systems constitutes a topic of research. New
algorithms and methods are needed to efficiently simulate the longtime behavior of dislocations,
an area that has proven to be less amenable to parallelization than large system size problems.
This work is the first to attempt the parallelization of Micromegas, in general, and on multi-core
architectures, in particular.

Figure 1.2: Evolution of the computational time spent in UPDATE and FORCE (serial and parallel)
with increasing number of segments.

Contribution
The behavior and performance of Micromegas is analyzed using TAU [36], an open source perfor-
mance measurement system. The use of TAU allowed for identification of the major performance
bottlenecks. The main contribution of this work is parallelizing the most important bottleneck
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(FORCE) using a multi-threaded fork and join approach. The parallelization significantly reduced
the overhead of FORCE, while the total simulation time was reduced by ∼50% on 4 threads. The
scientific simulation data (e.g., stress, strain and dislocation density) of the parallel simulation are
successfully validated for correctness and accuracy against those of the sequential simulation.

The rest of this document first discusses related work in Section 1.1, and then describes our
parallelization and implementation in Section 2. Section 3 describes how we evaluated our paral-
lelization and implementation and presents the results obtained. Section 4 presents our conclusions
and outlines directions for future work.

1.1 Related Work
In the mid-1960’s, Brown [4], Bacon [3] and Foreman [9] initiated the development of discrete
dislocations simulations in proposing a framework to characterize the curvature of a line of dis-
location under an applied stress. It was not until the early 1990’s that the first 2-dimensional and
3-dimensional discrete dislocation simulations were proposed by Ghoniem and Amadeo [1] and
Kubin et al. [18], because of the high performance computational resource required by the original
framework to model interactions between a large population of dislocations.

The methodologies developed for the three-dimensional dislocation dynamics can be catego-
rized into two groups based on the topology of a general curved dislocation line. The first method
is based on an edge-screw (Kubin et al. [18]) or edge-mixed-screw (Madec et al. [19], Devin-
cre et al. [7]) discretization of the dislocation lines. The basic idea of this approach is that the
discrete segments move on a discrete lattice superimposed onto the crystallographic lattice, but
on the orders of a larger magnitude. The second category of methods simulates dislocations as
smooth flexible lines discretized either by linear splines (Zbib et al. [30][31], Arsenlis et al. [2],
Kristian and Kratochvil [16][17]), cubic splines (Ghoniem and Sun [10], Ghoniem et al. [11]) or
circular arcs (Schwarz [24][25]). Although the description of a curved dislocation differs, these
two categories converge to each other when the number of degree of freedom is increased in the
edge-mixed-screw model.

Over the last decade, the discrete dislocations framework has been applied to model different
crystal structures. Moulin et al. [22] and Tang et al. [27] extended the edge-screw model to
diamond cubic and BCC (body-centered cubic) crystal structure, respectively. Madec and Kubin
[20] implemented the BCC crystal structure in the edge-screw-mixed model and investigated the
strength of the junction in FCC (face-centered cubic) and BCC crystal structures. Monnet et al.
[21] extended the edge-mixed-screw model to the HCP (hexagonal close-packed) crystal structure
with only basal dislocations. Durinck et al. [8] implemented the orthorhombic symmetry for
olivine in a 3-D discrete dislocation dynamics. They demonstrated that no junction formation
results from the interaction between [100] and [001] dislocations in this crystal structure. The
linear splines models were developed for FCC [31][16], and for BCC crystal structures [2]. The
FCC crystal structure was implemented in the cubic splines models [10][24][25].

It has been shown that the numerical limitations associated with 3-D dislocation dynamics may
be overcome by the use of parallel computing. Rhee et al. [23] developed a parallel version of the
DDD code called micro3d. They showed that the parallel code yields a significant speedup, but
does not scale with the number of processors. Parallelism saturation is mainly due mainly to the
short-range reactions between the dislocation segments, which necessitates frequent communica-
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tion among processors. Nevertheless, using this parallel code, large-scale dislocations problems
and dislocations-defects problems were analyzed (see, e.g., Khraishi et al. [14][15]). Recently,
Shin et al. [26] proposed a parallel algorithm to speed up the edge-screw model, while Wang et al.
[29] and Arsenlis et al. [2] proposed a parallel algorithm to speed up the cubic and linear splines
models, respectively. Using the parallel version of the DD simulation code, Arsenlis et al. [2] were
able to reach 1.7% of the plastic deformation during the tensile test of a specimen of molybdenum
at an elevated temperature. Senger et al. [34] used a parallel DDD code to study stress distribu-
tions in polycrystalline materials with FCC crystal structure. The interested reader is referred to a
recent review by Groh and Zbib [12] of the discrete dislocation methodology and its implication
to multiscale modeling of the mechanical behavior of crystalline materials.

Until today, the development of Micromegas was focused on the physics involved in the plastic
deformation of various crystal structures (FCC, BCC, HCP, CC), while all the above parallel codes
are dedicated to a single crystal structure.
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Chapter 2

Parallelization of Micromegas

Micromegas is written in a mix of Fortran 90 and Fortran 95, consisting of 16 source modules
and containing roughly 25,000 lines of code. Figure 3 gives the pseudocode of the MAIN mod-
ule in Micromegas. A typical simulation run in Micromegas requires somewhere between 104 to
109 time steps, which are imposed by the desire to gain more insight about the plastic deforma-
tion range. Simulations with a smaller number of steps are very likely not to capture the plastic
range of deformation, which constitutes the region of interest for the materials scientists studying
plastic deformation. For 2x104 time steps, each time step of 10−9 seconds, the serial version of
Micromegas takes on average 52 hours to reach 0.035% of the plastic deformation on a 4-way
Intel Xeon W3570 processor, with 6GB of triple channel 133MHz DDR-3 RAM. As explained in
Section 1 and Section 1, one needs to run simulations of about 109 time steps in order to achieve
the desired percentage of deformation, that is, as high over 1% as possible.

! Module MAIN: simulation time loop
TIME: do = 1, STEPS
...

call SOLLI ! Apply load
call DISCRETI ! Discretize the simulation volume into dislocation lines/segments
call FORCE ! Calculate interaction forces

!FORCE calls SIGMA_INT_CP to calculate short range interaction forces
!FORCE calls SIGMA_INT_LP to calculate long range interaction forces

call DEPPREDIC ! Predict moving segments
call UPDATE ! Search for obstacles, determine & make contact reactions, update positions of segments
call CORRIGER_CONFIG ! Check the connections between all segments
...

enddo TIME

Figure 2.1: Serial Micromegas: Pseudocode of the MAIN Micromegas module illustrating the
most important subroutines called during each simulation time step.

In this work, we are interested in parallelizing the part of Micromegas expected to give the high-
est “performance lift”, i.e., the part calculating the interaction forces. The pseudocode in Figure
3 indicates that Micromegas belongs to the class of time-stepping scientific applications. Time-
stepping applications are not easily amenable to parallelization. This indicates that our efforts
need to be concentrated on speeding up the execution of a single time step. We target multi-core
processors by employing the fork-and-join model of parallelism. The parallelization approach
consists of the following five steps: (1) discovering the parallelism, (2) expressing the parallelism,
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(3) performing the thread-safety analysis, (4) analyzing the parallel application code (5) tuning
the parallel code and (6) verifying the correctness of the parallel code. Each of these steps are a
significant part of the parallelization process and are elaborated individually below.

2.1 Discovering the parallelism
To achieve our goal, we begin by extensive measures of Micromegas’ performance using TAU [36],
a state-of-the-art portable profiling and tracing package. TAU allowed easy and customizable in-
strumentation of Micromegas. Given that a typical Micromegas simulation run requires 104 to 109

time steps and takes over 50 hours or longer, we decided to execute the instrumented Micromegas
version over 1,000 time steps. The instrumented version of the original code was executed on a
single core of the machine. TAU enabled us to collect profiling information at various levels: outer
loops, routine level and memory leaks. Using TAU, we were also able to collect traces of the se-
rial execution of the instrumented code. Being able to obtain these measurements was crucial to
understanding the behavior of the simulation code and to identifying the performance bottlenecks
of the application.

We collected profiling information from a serial run of the application over 1,000 time steps.
Profiling yields timing information summed over all invocations of a function. The execution call-
graph of the original application code is illustrated in Figure 4. The callgraph was illustrated with
Paraprof, TAU’s 3-D profiling data visualization tool. The red box indicates the most time con-
suming part of the application, i.e., the ‘hot spot’, namely subroutine SIGMA INT CP of module
ELASTI. The green box indicates the second most time consuming part of the application, i.e., the
‘warm spot’, namely subroutine UPDATE in module CONTACT. Blue color indicates subroutines
that take less time than those in the green or red color boxes, and are called ‘cold spots’.

On the basis of the profiling information obtained with TAU, we were able to sort the modules
of Micromegas in decreasing order of importance, with respect to the percentage of the total se-
rial time attributed to each module. The profiling data for the simulations over 1,000 time steps
indicated that the most important module was ELASTI, and the most important subroutine of this
module was SIGMA INT CP, called by subroutine FORCE. Similarly, the second most important
module was CONTACT with the most important subroutine of this module being UPDATE.

The profiling information collected allowed us to understand the callpath relations among the
most important subroutines (see Figure 6 - left). Figure 6 - right gives the percentile distribution
of the serial time per subroutine. One can see that the ELASTI::SIGMA INT CP subroutine ac-
counts for 72.675% of the serial run time, while subroutine CONTACT::UPDATE is responsible
for 26.885% of the serial run time, respectively.

Tracing yields a time line of events occurring throughout the execution of an application. The
traces produced by TAU can be converted to various formats, that can be interpreted by other trace
visualization tools. Due to the fact that tracing is a lower level type of application performance
analysis, the volume of trace data is much higher than that of profiling data. Using TAU, we col-
lected traces of the serial execution of the application only for 10 time steps. These traces were
converted to the SLOG2 format and visualized with Jumpshot [37], a Java-based visualization tool
for doing postmortem performance analysis. Figure 5 illustrates the serial execution trace visu-
alized with Jumpshot. The legends highlight the most time consuming subroutines, i.e., FORCE,
SIGMA INT CP and UPDATE.
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Figure 2.2: Serial Micromegas: Visualization of serial execution callgraph for 1,000 time steps.
Important subroutines are highlighted in colors, where red denotes a ‘hot spot’, green a ‘warm
spot’ and blue a ‘cold spot’.

Upon analyzing both the profiling and tracing data, in Figures 4 and 5, respectively, and given
the structure of the application code (see Figure 3), we identified the fact that speeding up the cal-
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Figure 2.3: Serial Micromegas: Visualization of serial trace for 10 time steps. The legend high-
lights FORCE, SIGMA INT CP and UPDATE.

culations of a single time step will require that our efforts be focused on parallelizing the subroutine
SIGMA INT CP, which calculates the short range interaction forces between the dislocation seg-
ments. Senger et al. [34] used a similar idea to parallelize the interaction forces calculations in
their DDD code, which based on the dynamics of nodes, whereas Micromegas is based on the
dynamics of segments.

2.2 Expressing the parallelism
In this step, we consider parallelizing the Micromegas modules in decreasing order of impor-
tance, based on the serial time distribution among subroutines. The most important module is
ELASTI, while the most important subroutine of this module is SIGMA INT CP, called by sub-
routine FORCE. We parallelized this module using the fork-and-join model in which the code
consists of alternating serial and parallel regions. We chose the fork-and-join model because of its
ease of implementation and non-invasive modifications to the original serial code. The fork-and-
join model is implemented using OpenMP [35] directives.

Subroutine SIGMA INT CP contains a mix of nested DO loops and a series of consecutive
DO loops that iterate over the number of boxes, the number of segments in each 3-D box and
over each segment in a box. These nested DO loops calculate the short-range interaction forces
between the segments, and, therefore, the iterations of these loops are independent of each other.
We parallelized the outermost loop, which iterates over the number of boxes of the simulation
domain, by distributing its iterations among the processing cores in a master-worker fashion.
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Figure 2.4: Serial Micromegas: Callpath relations (left) showing the inclusive and exclusive time
together with the total number of calls and child calls per each subroutine. FORCE is the subroutine
of the module ELASTI that calls SIGMA INT CP. The bar chart (right) shows the percentage
distribution for every subroutine. Due to the large number of subroutines in Micromegas, we
show only the most important subroutines, with respect to their percentage of the total serial time.
ELASTI::SIGMA INT CP is the most important performance bottleneck accounting for 72.675%
of the serial run time over 1,000 time steps. CONTACT::UPDATE is the second performance
bottleneck accounting for 26.885% of the serial run time over 1,000 time steps.

2.3 Debugging the parallel application code
Following parallelization, the next important step was to ensure the thread safety of the parallelized
application code. This requires a good knowledge of the application code and of its behavior.
Gaining sufficiently thorough knowledge of the application code can be time consuming, especially
for applications with a very large number of lines of code and complex modules dependencies, such
as Micromegas. However, failing to ensure the thread safety of the parallelized code has a direct
impact on both the performance and the accuracy of the parallelized application code.

Ensuring thread safety required identification of all global data dependencies and their effective
privatization. To ensure the tread safety of the parallelized SIGMA INT CP subroutine, we started
by identifying the global data that are defined outside the parallel loop and only read inside the
loop. Thread safety was achieved by declaring this data in the list of shared variables. Next, we
identified global data with dependence relations, that is data that is defined outside the loop but
computed/updated inside the loop. In these instances, multiple iterations update the same data
structure, e.g., the array of forces. Thread safety was achieved via fine grained locking, which
ensures that the updates on the shared data occur in a sequential order, since the final result is
independent of the ordering of the iterations. Finally, we identified local data with dependence
relations, which refers to data defined inside the loop and computed/update inside the loop. In this
case thread safety was achieved by privatizing and initializing the data to the values of the first
executing thread.
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2.4 Analyzing the parallel application code

Figure 2.5: Parallel Micromegas: Callgraphs visualization for parallel execution on 4 cores - mas-
ter thread callgraph (left) and the worker threads callgraph (right) for 1,000 time steps.

Figure 2.6: Parallel Micromegas: Visualization of parallel trace for 10 time steps. The legend
highlights FORCE, SIGMA INT CP and UPDATE.
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Figure 2.7: Parallel Micromegas: Master thread functions bar chart (left) and woker thread func-
tions bar chart (right) showing the percentile distribution for each subroutine. In the master thread,
the parallelized ELASTI::SIGMA INT CP is no longer the primary performance bottleneck and
accounts for only 40.558% of the parallel run time over 1,000 time steps on 4 threads. CON-
TACT::UPDATE is now the most time consuming subroutine and accounts for 58.41% of the par-
allel run time over 1,000 time steps on 4 threads.

Figure 2.8: Parallel Micromegas: Callpath relations in the master thread (left) and the worker
thread (right) showing the inclusive and exclusive time together with the total number of calls and
child calls per each routine.

Following parallelization and thread safety, we collected profiling data for the execution of the
parallelized Micromegas. Figure 7 shows the execution callgraphs of the master (left) and worker
threads (right). In the fork-and-join model, only the master thread “out-lives” the execution of
a parallelized code region, while the worker threads “are alive” only inside a parallelized code
region. The callgraph of the master thread subsumes the worker thread callgraph. This is due
to the fact that inside a parallel code region the master thread behaves just like a worker thread,
as dictated by the fork-and-join model. This explains the similarity between the callgraph of the
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master thread and the callgraph of the main thread of the serial execution from Figure 4. The
callgraph of a worker thread is the same for all worker threads.

Similarly to Figure 4, the red box in Figure 7 (right) indicates the most time consuming sub-
routine of the application. In this case, however, the red box indicates the subroutine UPDATE,
which in the serial code was indicated in a green box. Also, subroutine SIGMA INT CP is no
longer indicated in a red box but in a blue box, which signifies that it is no longer the most time
consuming part of the application.

Figure 9 shows the ordering with respect to the percentile distribution of the total parallel
time per module/subroutine executed by the master thread and by the worker threads. In this fig-
ure, the ordering for the subroutines executed by the master thread is different from the ordering
of the subroutines executed by the single thread in Figure 3. According to Figure 5, subroutine
CONTACT::UPDATE became the most important performance bottleneck in the parallel execu-
tion, accounting for 58.41% of the parallel run time over 1,000 time steps. The second most time
consuming part corresponds to the parallel region of ELASTI::SIGMA INT CP and accounts for
40.558% of the parallel run time over 1,000 time steps. Figure 9 illustrates the callpath relations
among the most important subroutines in the master thread and worker threads, respectively.

In addition to profiling, we also collected traces of the parallel application for 10 time steps.
These traces were again produced by TAU and visualized with Jumpshot. Figure 8 illustrates the
parallel execution trace on 4 cores visualized with Jumpshot. The legends highlight the most time
consuming subroutines, i.e., FORCE, SIGMA INT CP and UPDATE.

2.5 Tuning the parallel application code
The choice of the thread scheduling method among the three methods supported in OpenMP, i.e.,
static, dynamic or guided, is very important and can have a high impact on the performance of
the parallelized application code. Dynamic self-scheduling has been proven to provide the best
parallel performance in general. However, the overhead associated with this choice of scheduling
can be a considerable performance degradation factor; dynamic self-scheduling should be chosen
when the size of the loop compensates for this overhead.

Due to the longtime nature of the simulations, so far we were able to investigate only the
static scheduling methodologies. We chose static scheduling for distributing the iterations of the
outermost loop in SIGMA INT CP, which iterates over the number of boxes, where the chunk size
was equal to the number of boxes divided by the number of threads. Then, we used selected a
different chunk size as half of the original chunk size, that is the number of boxes divides by twice
the number of threads. The results presented in this work were obtained with static scheduling
and the second choice of chunk size. Due to the fact that all cores are homogeneous and due to
the dedicated test system, the master thread executes SIGMA INT CP in a perfectly load balanced
fashion simultaneously with the worker threads.

Figure 11 gives a 3-D view of the time distribution per subroutines over 1,000 time steps for
each thread. The master thread (0.0) together with the worker threads (0.1, 0.2 and 0.3) execute
ELASTI::SIGMA INT CP simultaneously in a load balanced fashion. However, only the master
thread (0.0) executes CONTACT::UPDATE, which is the second most time consuming part of the
original application code.
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Figure 2.9: Parallel Micromegas: 3D view of the time distribution per subroutines for each thread
over 1,000 time steps. Master thread (0.0) is responsible for executing CONTACT::UPDATE, the
second most time consuming part of the original application code. Master 0.0 together with worker
threads 0.1, 0.2 and 0.3 execute ELASTI::SIGMA INT CP in parallel in a load balanced fashion.)

2.6 Verifying the correctness of the parallel application code
The final step in the parallelization methodology deals with the correctness of the results obtained
with the parallel application code. To achieve this we conducted two sets of serial and parallel tests.
The goal of the first set was to verify the total number of segments, N , and the number of moving
segments with length greater than zero, ND, produced by the serial and parallel application codes.
The tests indeed verify that evolution of N and ND over 30,000 time steps is the same for both
serial and parallel application and is depicted in Figure 12.

Encouraged by the first set of verification tests, we compared the mechanical properties (stress-
strain curve, resolved sheer stress response and dislocation density) produced by the serial and par-
allel application codes. The verification test set shown in Figure 13, confirms that the mechanical
properties produced by the serial and the parallel version of Micromegas are the same.
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Figure 2.10: Evolution of the total number of segments,N , and the number of dislocated segments,
ND, over 30,000 time steps. N and ND from the parallel simulation run are equal to those from
the serial simulation run.

Figure 2.11: Validation of scientific data obtained from the parallel simulation against scientific
data obtained from the serial simulation over 30,000 time steps.
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Chapter 3

Evaluation

Improving the performance of Micromegas required the analysis of the original application code,
its parallelization and its evaluation under conditions similar to those of a representative DDD
simulation. The simulation parameters of a representative Micromegas simulation are: 0.5% of
plastic deformation, in a box of dimension 10x10x10 µm3 with an initial density of 1012m−2 and
a strain rate of 10 s−1 in multislip conditions. Multislip calculations were performed to demonstrate
the efficiency of the parallel version of the application code. Representative volume elements of
Al (FCC crystal structure with Burgers vector of magnitude b = 2.86 ) of dimensions 9x10x12
µm3 were loaded along the [001] direction with a strain rate of 20 s−1 at a temperature of 300 K.
Screw dislocations were not allowed to cross-slip at any time, while a time step of 10−9 seconds
was considered.

The evaluation tests were conducted on a commodity 4-way Intel Xeon W3570 processor, run-
ning at 3.2GHz with 6GB DDR-3 RAM, SLES 10 OS, 2.6.16.60 Linux kernel. We are interested
in the speedup and efficiency of the parallel application code relative to the serial application code.

In the first step of the parallelization methodology it was determined that SIGMA INT CP,
accounts for ∼73% of the serial execution time. With infinite parallelism, there is a theoretical
speedup of 4.54 as dictated by Amdahl’s law. Attributing the parallelizable part of Micromegas
to SIGMA INT CP, we can say that S=27% is the serial part of Micromegas. Assuming P=4
available processing elements, the speedup through parallelism on these processing elements is
1/(S + ((1 − S)/P ) = 2.20, while the theoretical speedup limit assuming P− > ∞ is then
1/S = 4.54.

Figure 14 shows the speedup of the parallel application code relative to the serial application
code for simulations over 30,000 time steps on 4 threads. The efficiency (E) of the parallel applica-
tion code is shown for each parallel test case. Both performance metrics (speedup and efficiency)
demonstrate the scalability of parallel Micromegas with the number of time steps increasing from
5,000 to 30,000.
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Figure 3.1: Speedup of the parallel application code relative to the serial application code over
30,000 time steps on 4 threads. The efficiency (E) of the parallel application code is shown for
each parallel test case. Both performance metrics (speedup and efficiency) show the scalability of
parallel Micromegas with the number of time steps increasing from 5,000 to 30,000.
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Chapter 4

Conclusions and Future Work

Advancements in application analysis tools have made parallelization of complex application codes
an easier task than before. Good implementation practices together with a fair knowledge of the
application code, however, are imperative for making parallelization a less complicated and faster
task.

In this work we narrowed the gap between Micromegas and multi-core computing systems.
We achieved this via a ‘performance lift’ based on the multi-threaded parallelization of the major
performance bottleneck of the original application code. The outcome of this work is an improved
simulation code for research in discrete dislocation dynamics for materials science. The signif-
icance of this work lies in that the improvements in the simulation code permit the scientist to
perform longer simulations of higher temporal fidelity, using more processors, which were not
feasible previously.

The results presented in this work are the first efforts to parallelize Micromegas. There is
certainly room for improving the current results that could be addressed via several directions,
which may include different scheduling methods for the parallelized subroutines, scaling the par-
allel code beyond 4 cores, or even using graphics-based accelerators (GPUs). Such directions will
be addressed in future work.
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