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Nonlinear finite element analysis is used to investigate the quasi-static axial collapse response of

cylindrical tubes which are externally stiffened by multiple identical rings. The rings divide the long tube

into a series of short thin-walled tubes. It is assumed that the size and shape of integral stiffeners are

controlled through a machining process. The effects of various geometric parameters such as wall

thickness, ring spacing, ring thickness and width on the collapse response, crush force and energy

absorption of monolithic, integrally stiffened steel tubes are studied and used as a general framework for a

design optimization study. Through design and analysis of computer experiments, global metamodels are

developed for the mean crush force and energy absorption, using the radial basis function approximation

technique. Using both single- and multi-objective design optimization formulations, optimum designs for

different response characteristics are found. The crush mode in the form of progressive collapse or

buckling is found to heavily depend on the ratio of stiffener spacing to stiffener height as well as the ratio

of wall thickness to stiffener thickness. The optimization results show the viability of externally stiffened

tubes as efficient energy absorbers.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Energy absorption characterization of tubular components has
been the subject of many experimental and theoretical studies [1–4].
Responses under both dynamic (crash) and quasi-static (crush) loads
have been reported. Tube models found in the literature are fairly
diverse in material (metallic or polymeric composite) and geometry,
including circular, square and octagonal tubes [4–5] with single- and
multi-cell configurations [6], tapered and s-shaped tubes and tube
models that have honeycomb or foam-filled cavities [7,8]. Amongst
them, circular tubes made of ductile materials have attracted much
more attention, due to their plastic deformation, high stiffness- and
strength-to-weight characteristics combined with an ease of manu-
facturing. These tubes can dissipate an impact energy by various
means, including plastic deformation, friction or tearing [5,9].

When a metallic tube is crashed into or crushed against a flat
rigid wall, it undergoes an irreversible process whereby the crash/
crush-induced energy is dissipated through plastic deformation or
inelastic buckling. Generally, progressive plastic collapse with a
stable mode of deformation (tube axis remains straight) offers a
greater capacity for energy absorption than inelastic buckling that
leads to an unstable response (local buckling and bending) with
plastic deformation in only limited regions. As such, enhanced
specific energy absorption (SEA, the ratio of total energy absorption
to the tube mass) and stroke efficiency (SE, the ratio of deformed
ll rights reserved.
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length to the total tube length [3]) can be achieved by triggering the
progressive collapse response.

Another means for energy dissipation is through the inversion
mode of deformation when the tube is pressed against a rigid plug or
die of certain shape, which causes the inward or outward folding
(peeling or tearing) of the tube [10–14]. This mode occurs within the
specific range of geometrical dimensions for the tube as well as the
friction between the contacting surfaces. The low SE and strong
sensitivity to external parameters, such as the loading condition, limit
the viability of inversion mode as an energy absorption mechanism.

Axial splitting and curling of tubes against conical dies is also
used as an energy absorption method [15–17]. In this failure
mechanism, a large portion of tube length contributes to an energy
dissipation (i.e., high SE), and the collapsing force is relatively
steady. However, this method provides low crush load, and the
crush performance is strongly affected by such external parameters
as the loading direction.

Recently, plastic expansion of circular tubes by rigid inserts has
been introduced as an efficient way to absorb energy without any
serious sensitivity to loading direction and other external para-
meters [18]. However, this method yields low SE and SEA values
while it requires lower values of mean crush load to protect the
structure from damage. The combination of different methods of
energy dissipation (inversion and axial crushing of metal tubes in
a single collapsible design) was investigated for the first time by
Chirwa [19].

Among various methods of energy dissipation in crush tubes,
progressive folding mechanism provides a relatively constant load
and fairly high SE. In comparison to other energy dissipation
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Fig. 1. Externally stiffened circular tube with associated geometric design para-

meters [35].
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methods, a greater percentage of tube material can contribute to
plastic deformation providing high SEA. However, all of these favor-
able energy absorption characteristics can be achieved when the tube
crushes progressively, and numerous experimental and theoretical
studies [20–25] have shown that various parameters such as tube
geometry, material properties, boundary conditions and loading
conditions may affect the progressive crushing response.

Various design methods have been proposed to increase the SE and
SEA of thin-walled tubes under axial crush loads. These investigations
have also aimed to improve the stabilization of the collapse process
and reduce the magnitude of peak load at the initial stage of the
collapse. Abah et al. [26] investigated the effect of corner cutouts to
initiate collapse and reduce the peak load of rectangular tubes under
an axial load. Lee et al. [27] introduced triggering dents and investi-
gated the effect of two types of dents, full- and half-dents, with the aim
of decreasing the peak load. Shakeri et al. [28] introduced plastic
buckling modes as an initial geometric imperfection in the post-
buckling analysis to encourage progressive crushing and reduce
maximum crush force in cylindrical tubes. Daneshi and Hosseinipour
[29] showed that cutting circumferential grooves alternatively inside
and outside of the tube at predetermined intervals could be an
effective tool to force the plastic deformation to form at predetermined
intervals along the tube. Using this pattern, it was possible to control
the collapse shape of thin-walled structures. Singace and El-Sobky [30]
investigated the energy absorption characteristics of corrugated tubes
and showed that corrugations force plastic deformation to occur at
predetermined intervals along the tube length and improve the
uniformity of the load–displacement behavior of axially crushed
tubes. Moreover the corrugated design of cylindrical tubes made it
possible to predict and control the collapse mode in each corrugation,
in order to optimize the energy absorption capacity of the tube.

Internal stiffening of metallic tubes with filler materials such as
wood, metallic or non-metallic honeycomb and foam has also been
shown to improve an energy absorption capacity in a number of
investigations [31–33]. Non-compact crushing and global buckling
behavior under axial loads are eliminated in the foam-filled tubes.
Moreover in comparison with empty tubes of the same size, foam-
filled tubes are less affected by loading parameters (i.e., direction and
uniformity) and are more stable during the collapse process. By
cutting a tube in several portions followed by the coaxial assembly,
Abdul-Latif et al. [34] found that they could encourage the axisym-
metric mode in an axial crushing of circular tubes.

Recently, Salehghaffari et al. [35] developed a new design concept
to control energy absorption characteristics of thin-walled circular
tubes under an axial compression. By machining wide circumferen-
tial grooves from the outer surface of a thick-walled tube at specific
intervals, they arrived at a general design concept for an integrally
stiffened (monolithic) tube, as shown in Fig. 1. The thicker portions
(rings) essentially act as external stiffeners for the enclosed thin-
walled tube sections. When the stiffened tube is subjected to an axial
compression, the thin-walled sections between two adjacent ring
stiffeners fold resulting in an enhanced energy absorption. This design
model has been shown to be efficient in encouraging concertina folds,
improving crushing stability, and making the component less sensitive
to loading parameters, while improving its energy absorption char-
acteristics such as an SE, maximum and mean crush forces and SEA.

Structural optimization techniques have been applied recently
to optimize energy absorption characteristics of energy absorbing
components. For an enhanced computational efficiency, surrogate
models (metamodels) are often used in lieu of nonlinear finite element
analysis (FEA) in structural design optimization studies. Response
surface methodology (RSM) is among the commonly used metamo-
deling techniques used in crashworthiness optimization [36–38].
Yamazaki and Han [39], Lee [40] and Chiandussi et al. [41] have
applied an RSM method in crashworthiness optimization of energy
absorbing devices. However, the drawback of using second-order
response surface (RS) models is that they may not be appropriate for
creating global models that are accurate over the entire design space
for highly nonlinear problems. Although it is possible to develop higher
order RS models, they may not be effective or appropriate for
crashworthiness optimization, partly due to the high computational
cost in an extensive sampling of the design space [42]. Recent inno-
vations to improve both the accuracy and efficiency of an RSM include
the development and application of the sequential local RSM [43,44]
adaptive RSM [45], and trust-region-based RSM [46]. These approa-
ches partition the feasible design space into multiple small regions that
can be accurately represented by low-order RS models.

In this paper, we present results of nonlinear finite element (FE)
simulations of ring-stiffened tubes for various combinations of geo-
metric parameters followed by shape and sizing optimization of
such tubes for different choices of objective and constraint func-
tions. Sampling of the design space is done using the Latin
Hypercube Sampling (LHS) technique, while Radial Basis Functions
(RBF) are used to build response metamodels that relate SEA and
peak crush force to the geometric design variables associated with
the externally stiffened tube model. Genetic algorithms (GA) are
used as the optimizer for solving both constrained single- and
multi-objective optimization problems.
2. Design and analysis of computer experiments

2.1. Description of an FE model

The basic geometry of the FE model, created according to the
suggested guidelines [47], is shown in Fig. 2. The number of ring
stiffeners in Fig. 1 is defined as an N+1, where N represents the
number of thin-walled sections along the length of the tube. The
stiffener section is defined by the geometric parameters d and w,
whereas the thin-walled portions are defined by dimensions t

and S. Hence, in the thick (stiffened) sections, total wall thickness is
t+d. The tube’s inner diameter Di¼52 mm and length L¼250 mm
are held fixed, while its other geometric parameters are allowed to
vary in the optimization process as discussed later. It should be
noted that S, w and N are related as

NSþðNþ1Þw¼ L ð1Þ

Through parameterization, the FE mesh can be readily updated
for different combinations of design variables. A rigid plate, placed
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at the bottom of the stiffened tube, is described as a moving rigid
body with all degrees of freedom, except translation along the
tube’s axis set to zero. Also, all nodes at the top edge of the stiffened
tube are constrained in all degrees of freedom.

We used the explicit finite element analysis (FEA) code LS-
DYNA, version 971 to perform all nonlinear axial crush simulations.
The quasi-static compression was simulated by moving the rigid
plate with a constant upward velocity of 0.1 m/s. In order to reduce
the time steps and computational time, the mass density of the
tube material (steel) was scaled up 1000 times the original density.
Thus, under this loading condition, no inertial or dynamic effects
were present in the deformation process.

To define contact between the moving rigid plate and the statio-
nary tube, ‘‘surface-to-surface’’ contact type was adopted with tube
and plate nodes defined as ‘‘slave’’ and ‘‘master’’ nodes, respectively.
Fig. 2. FE model of the externally stiffened tube.

Table 1
Design points used in an RBF fitting.

Design # N d (mm) t (mm) S (mm) w (mm)

1 5 1.91 1.93 27.08 19.10

2 5 2.15 1.26 43.75 5.21

3 5 1.55 2.53 32.29 14.76

4 5 2.88 2 36.46 11.28

5 5 2.28 1.07 31.25 15.63

6 5 2.03 1.73 44.79 4.34

7 5 0.46 2.2 38.54 9.54

8 5 0.58 2.33 26.04 19.97

9 5 2.4 1.2 47.92 1.74

10 5 0.95 1.8 29.17 17.36

11 5 0.7 2.47 42.71 6.08

12 5 1.67 1.67 34.37 13.02

13 5 1.19 2.13 33.33 13.89

14 5 2.76 2.4 45.83 3.47

15 5 1.43 1 41.67 6.94

16 5 0.34 1.47 48.96 0.87

17 5 1.07 1.6 46.88 2.60

18 5 2.64 2.07 25.00 20.83

19 5 0.22 1.13 28.13 18.23

20 5 1.79 1.40 40.65 7.81

21 5 1.55 1.80 37.50 10.42

22 5 2.52 1.33 35.42 12.15

23 5 0.83 2.27 30.21 16.49

24 3 2.59 2.57 66.00 13.00
A ‘‘single-surface’’ interface was also selected to prevent penetration
of the contacting elements in the tube model. The friction coefficient
for surface-to-surface and single-surface contacts was set to 0.3 and
0.15, respectively.

We used solid (hex8) elements in all computer simulations. The
sensitivity of the simulated results to mesh density for each
computer experiment was analyzed in order to choose a suitable
element size for the simulation. In some computer experiments,
program termination due to the appearance of negative volume of
solid elements was observed. This was caused mainly by the
element Jacobian calculation at geometric points of the outer
boundary of highly deformed solid elements [47]. In some com-
puter experiments, rapid compression of elements in the stiffener
sections as well as the nearby elements in the thin-walled sections
resulted in an occurrence of a negative volume in solid elements.
Through several computer simulations, it was discovered that the
following factors contributed to the negative volume.

Element size: computational experiments indicated that highly
deformed areas of the stiffened tube with smaller element size contri-
bute to negative volume calculation. Hence, element size was increa-
sed from 1�1 (models without negative volume problem) to 2.3�
2.3 (models with negative volume problem) to prevent this problem
without sacrificing the solution accuracy. Therefore, suitable element
size varies from 1�1 to 2.3�2.3 in different tube models. Note that
an element size of 2.3�2.3 is found to be the closest element size to
1�1 that would help prevent the problem of negative volume, while
maintaining the simulation accuracy.

Hourglass: deformation of solid elements in an hourglass mode
can also result in the negative volume. Hence, we used hourglass
control option in LS-DYNA simulations to resolve this problem. For
hourglass control, we used Eq. (6) [47] in LS-DYNA with hourglass
coefficient of 0.1, linear bulk velocity coefficient of 1.5 and
quadratic bulk velocity coefficient of 0.06.

Interior contact setting: since solid elements in the thick regions
of the tube have minimal participation in the plastic deformation,
an interior contact setting was used to help alleviate the negative
volume problem.

In the quasi-static simulations of the models in Table 1, we
considered all of the factors mentioned above and took corrective
actions to ensure the solution accuracy.
Design # N d (mm) t (mm) S (mm) w (mm)

25 3 0.51 2.37 75.00 6.25

26 3 0.93 1.57 45.00 28.75

27 3 2.17 1.46 60.00 17.5

28 3 1.76 2.49 69.00 10.75

29 3 1.55 1.8 63.00 15.25

30 3 1.14 1 54.00 22.00

31 3 1.96 1.91 78.00 4.00

32 3 2.79 1.8 42.00 31.00

33 3 0.31 1.23 57.00 19.75

34 3 1.34 2.14 51.00 24.25

35 7 0.51 1.46 29.86 5.13

36 7 1.55 2.37 26.00 8.50

37 7 2.17 1 22.14 11.88

38 7 2.79 2.14 27.29 7.38

39 7 1.96 1.57 19.57 14.13

40 7 2.59 1.69 33.71 1.75

41 7 1.55 1.8 26.00 8.50

42 7 0.93 1.91 31.14 4.00

43 7 0.1 1.34 23.43 10.75

44 7 1.76 1.23 32.43 2.88

45 7 1.14 2.26 18.29 15.25

46 7 0.31 1.80 17.00 16.38

47 7 0.72 2.49 28.57 6.25

48 7 2.38 2.03 20.86 13.00



Fig. 4. Mechanism of plastic collapse in externally stiffened cylindrical tubes under

an axial compression [48,49].
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The material in the FE model is treated as an elastic–plastic with the
Young’s modulus¼210 GPa, kinematic hardening (material model
type 3 in LS-DYNA) and von Mises yield criterion specified. The true
stress–true strain curve of seamless steel, obtained by a standard
tensile test as shown in Fig. 3, was used to approximate the data points
in the plastic region of curve for all numerical simulations. Also, the
rigid movable plate was simulated using the material model type 20.
All numerical simulations of design samples were performed on a
Pentium PC 3.2 GHz with a typical simulation time of 6–8 h. Compar-
ison of FE results of some samples with those of experiments [35]
validated the accuracy of FE model predictions.

2.2. Basic mechanism of plastic collapse

In the recent articles by Salehghaffari et al. [48,49], the results of an
in-depth theoretical and experimental investigation into the collapse
mechanism of ring-stiffened circular tubes were presented. Assuming
a uniform and stable crush response, the general mechanism for an
energy absorption in ring-stiffened circular tubes is illustrated in
Fig. 4. As the axial load is increased, the thin-walled segments
supported by the ring stiffeners undergo plastic deformation that is
dominated by the formation of three plastic hinges. The so-called
concertina folds are generated in the thin-walled sections of the tube
in a fairly sequential fashion. While stiffeners help stabilize the
crushing process, they generally provide no contribution to plastic
deformation and energy absorption. The only exception is in the cases
where dimension d and/or w (Fig. 1) are/is reduced to the level that
makes the stiffeners less rigid and susceptible to the lateral bending.
Hence, SE, SEA and crush force are generally governed by the response
of the thin-walled segments of the tube. Depending on the geometric
properties of the tube, the crush response may become non-uniform
resulting in reduced energy absorption capacity [48,49].

2.3. Generation of random samples

Based on our previous experience with an analysis of externally
stiffened circular tubes [35,48,49], the optimization search is
limited to design samples with 4, 6 and 8 stiffeners (i.e., N+1¼4,
6 and 8). For generation of random samples, it is necessary to have
bounds on individual design variables. Assuming w¼0, it can be
seen from Fig. 1 that the upper bound for S corresponds to Nmin¼3
Fig. 3. True stress–true strain curve for seamless steel.
and is given by

Supper ¼
L

Nmin
¼

250

3
¼ 83:3 ð2Þ

The thin-walled portions of the tube are the principal con-
tributors to plastic deformation with potential length equal to
N� S. For SE¼0.5 (i.e., at least 50% of the tube length is crushed), we
find the lower bound on an S as

Slower ¼
L

2Nmax
¼

250

2� 7
¼ 17:85 ð3Þ

It is worth noting that the tube samples may have SE values
slightly o0.5 due to the fact that in the selected samples w40.
Substituting Eqs. (2) and (3)b into Eq. (1), the bounds for w are
found to be

wlower ¼ 0 wupper ¼
L

2ðNminþ1Þ
¼

250

2ð3þ1Þ
¼ 31:25 ð4Þ

Also, based on the previous observation of the effects of t and d

on the plastic collapse mode and the corresponding mean crush
force [35,48,49], the following bounds are imposed.

1rtr2:6 0rdr3 ð5Þ

Using an LHS technique and the selected bounds on the design
variables, we examined 48 design points. In the sampling process,
the random values for w and S for each design point were put into
Eq. (1) to calculate N. If the N value was found to be a non-integer, it
was modified to a number closest to 3, 5 or 7. In the second step,
values of w and modified N were put into Eq. (1) to obtain the
modified value of S for each sample. Geometric parameters of the
randomly selected design samples with modified values of S are
shown in Table 1. Among the 48 design-of-experiments (DOE)
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samples, 11, 23 and 14 of them have 4, 6 and 8 stiffeners,
respectively.
2.4. Simulation results and discussion

The simulation results for different tube samples are given in
Table 2. They include the values for tube weight, SEA, maximum
and average crush forces (Pmax, Pmean), crush force efficiency
(i.e., Pmean/Pmax), stroke or crush length, stroke efficiency and an
indication of crushing stability. Here, the crush length refers to the
maximum distance traveled by the moving rigid plate at the bottom of
the tube before an unstable crushing is observed in the simulation
results. Stable crush mode refers to the progressive collapse along the
tube axis, whereas an unstable mode involves buckling with or
without the progressive collapse. In the latter case, a lateral rotation
or bending of 101 in the tube axis is used as a criterion for identifying
the mixed crush modes that are buckling dominated.

SEA is often used as an accurate measure of energy absorption
capacity of the component [5]. On the other hand [3,5], an ideal
Table 2
FEA results for the randomly selected DOE design points.

Design # Weight (kg) SEA (kJ/kg) Pmax (kN) Pmean (kN

1 0.947 11.94 142.70 88.28

2 0.507 18.17 87.74 49.83

3 1.04 19.17 190.84 138.19

4 0.942 20.79 148.40 121.09

5 0.642 6.95 76.18 34.38

6 0.643 21.85 124.77 74.74

7 0.766 22.37 166.72 105.24

8 0.872 16.22 173.40 120.20

9 0.425 12.28 81.91 35.04

10 0.730 10.11 128.92 69.28

11 0.859 18.60 188.98 115.74

12 0.730 14.92 120.14 71.61

13 0.845 17.85 156.21 105.03

14 0.882 25.59 184.71 116.01

15 0.405 18.00 68.60 39.61

16 0.483 20.16 103.69 54.20

17 0.548 16.56 113.78 58.51

18 1.160 7.05 151.42 80.6

19 0.400 10.08 70.36 33.49

20 0.573 16.85 98.23 55.86

21 0.728 17.84 132.63 84.45

22 0.691 9.01 98.18 44.05

23 0.870 18.44 169.23 120.12

24 0.945 20.00 169.01 113.27

25 0.806 26.79 179.58 120.39

26 0.662 10.46 116.67 61.17

27 0.687 13.05 103.92 60.03

28 0.939 24.97 188.98 127.15

29 0.725 15.76 134.63 75.83

30 0.460 8.52 70.25 30.04

31 0.674 16.27 137.24 79.35

32 1.087 6.71 129.73 70.32

33 0.433 10.73 83.22 38.82

34 0.892 13.64 166.26 96.30

35 0.506 21.51 117.62 58.28

36 0.939 15.96 175.58 107.23

37 0.608 7.43 69.00 33.60

38 0.947 15.15 154.84 91.73

39 0.824 6.86 110.75 51.59

40 0.603 19.40 121.38 67.4

41 0.740 15.11 130.05 73.00

42 0.672 24.69 137.82 87.89

43 0.449 14.56 116.5 51.17

44 0.452 15.85 112.23 41.01

45 0.947 13.26 170.98 123.20

46 0.648 16.29 132.25 79.39

47 0.881 23.45 184.88 118.12

48 1.025 10.09 147.81 89.53
energy-absorbing design should provide a desirable constant mean
crush force–crush distance response under an axial loading. Gener-
ally, the initial peak in the crush–force–crush distance response
represents the maximum crush force (Pmax) that typically occurs soon
after the start of the crush process and is due to the initial elastic
resistance. While it is desirable to increase an SEA, it is preferable to
decrease Pmax in search of an optimum tube design. Moreover if tube
remains fairly straight during the crush process, its energy absorption
capacity will be enhanced.

Figs. 5 and 6 show the collapsed shapes separated by the mode
shapes. While most ring-stiffened tube designs undergo stable
crushing, others experience lateral bending resulting in crushing
instability. It is worth noting that a prismatic circular tube with the
same length-to-diameter ratio as the average among the stiffened
tube models (i.e., 4.81) would experience global buckling at the
initial stages of experiencing axial compression.

Numerical simulation of samples in Table 1 with different
geometric properties reveals that it is possible to identify the tube
characteristics that result in stable or unstable crush responses.
Fig. 7(a) shows the plot of S/w versus t/(d+t) and it indicates that
) Crush force

efficiency

Stroke length

(mm)

Stroke

efficiency

Crushing

stability

0.62 128.09 0.51 Stable

0.57 184.92 0.74 Stable

0.72 144.26 0.58 Stable

0.82 161.75 0.64 Stable

0.45 129.85 0.52 Stable

0.60 187.99 0.75 Stable

0.63 162.80 0.65 Stable

0.69 118.39 0.47 Stable

0.43 148.93 0.60 Unstable

0.54 106.59 0.43 Stable

0.61 138.02 0.55 Unstable

0.60 152.05 0.60 Stable

0.67 143.63 0.57 Stable

0.63 194.54 0.78 Unstable

0.58 184.00 0.74 Stable

0.52 179.67 0.72 Unstable

0.51 155.13 0.62 Unstable

0.53 101.48 0.41 Stable

0.48 120.37 0.48 Unstable

0.57 172.87 0.69 Stable

0.64 153.82 0.62 Stable

0.45 141.33 0.57 Stable

0.71 133.58 0.53 Stable

0.67 166.67 0.67 Stable

0.67 179.34 0.72 Stable

0.52 113.19 0.45 Stable

0.58 149.32 0.60 Stable

0.67 184.41 0.73 Stable

0.56 150.67 0.60 Stable

0.42 130.46 0.52 Stable

0.58 138.19 0.55 Unstable

0.54 103.66 0.41 Stable

0.47 119.71 0.47 Unstable

0.58 126.3 0.51 Stable

0.50 186.78 0.57 Stable

0.61 139.74 0.56 Stable

0.49 134.43 0.54 Stable

0.59 156.38 0.63 Stable

0.47 109.50 0.44 Stable

0.56 173.57 0.69 Unstable

0.56 153.12 0.61 Stable

0.64 188.74 0.75 Stable

0.44 127.73 0.51 Unstable

0.44 174.67 0.70 Unstable

0.72 101.95 0.41 Stable

0.60 132.93 0.53 Unstable

0.64 174.90 0.7 Stable

0.61 115.57 0.59 Stable



Fig. 5. Collapsed shapes of samples with stable deformation.
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samples with S/wo12 have a stable crush response for a wide
range of t/(d+t) values that extend from 0.3 to around 0.8. For
samples with S/w412 or t/(d+t)40.8, lateral instability will occur.
Fig. 7(b) shows the plot of S/t versus w/(d+t). For 2rw/(d+t)r7,
the tube undergoes stable crush for all values of S/t considered.
However, for w/(d+t)o2, lateral instability will occur for any value
of S/t as noted in Fig. 7(b). For w/(d+t)47, it is possible to encounter
both stable and unstable crush modes based on the value of S/t.

As also found in the previous research [35,48,49], it appears that
while for large values of w and d the stiffened regions do not
contribute to the plastic deformation, they play a significant role in
stabilizing the crushing process. However, unnecessary selection of



Fig. 6. Collapsed shapes of samples with an unstable deformation.

Fig. 7. Geometric regions for stable and unstable crushing of stiffened tubes.

Table 3
Effect of decreasing parameter d on crush characteristics of design # 38.

Decreasing

percentage

of d

d/t Stroke

length

(mm)

Pmean

(kN)

Pmax

(kN)

Weight

(kg)

SEA

(kJ/kg)

Crushing

stability

40 0.782 156.38 91.72 154.99 0.849 16.90 Stable

90 0.13 169.02 103.06 156.24 0.732 22.81 Stable

95 0.07 172.05 102.09 160.07 0.718 25.46 Unstable

Fig. 8. Collapsed shape of design number 38 with d reduced by (a) 40%, (b) 90% and

(c) 95%.
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large values for w and d increases the weight of the stiffened tube
without providing any improvement in crushing stability or energy
absorption.

Table 3 gives a summary of simulation results if d is decreased
by 40%, 90% and 95%. Fig. 8 also shows the collapsed shape for each
modified model. Decreasing d by as much as 40% does not affect the
collapse mode, but it decreases the weight and improves an SEA of
the stiffened tube. However, Pmean, Pmax and SE are not affected by
the 40% reduction in d (see Tables 2 and 3). Interestingly, decreasing
d by as much as 90% or 95% not only improves the SEA value, but
also leads to improvements in Pmean and SE. In these modifications,
the stiffened portions become thin enough to deform plastically
and contribute to an energy absorption. Also, Fig. 8 shows that
decreasing d by 90% keeps the crush mode stable, whereas a 95%
reduction results in an instability at the final stages of the crushing
process. It is not surprising to see the crushing instability for the
95% case since the d/t ratio is very small. However, it still provides a
better Pmean and SE than that of the case with 90% decrease. In fact,
at very small values of d, external rings act more like a trigger
mechanism than stiffeners.

Figs. 9 and 10 show the formation of the concertina folds
between the adjacent ring stiffeners and the corresponding load–
displacement curve for the sample 41, respectively. At the initial



Fig. 9. Essential features in the formation of the first concertina fold between two

adjacent ring stiffeners for sample 41 showing (a) local lateral deformation of all thin-

walled sections, (b) initial formation of plastic hinges and (c) complete formation of a

concertina fold.

Fig. 10. Load–displacement curve for the sample 41.
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stages of crush, the thin-walled sections begin to deform in the
shape of a barrel with two stationary plastic hinges at the top and
bottom edges along with a moving hinge line in the middle (see Fig. 4).
Further compression causes the middle plastic hinge line in the bottom
section to move outward in the radial direction until the top and
bottom sides of the lobe come in contact (see Fig. 9). This phenomenon
creates the first fluctuation of reaction load in Fig. 10. The same process
happens in the formation of the subsequent concertina folds in the
other thin-walled sections. However, the pressing plate travels a
longer distance in the formation of the first concertina fold than the
rest. This is due to the local deformation of all thin-walled sections at
the initial stages of pressing the whole tube before the first concertina
fold is formed. In fact, local deformation of all thin-walled sections at
the initial stages of crushing is responsible for reducing the initial peak
crush force significantly.

Final collapsed shapes of samples 7, 12, 21 and 37 (see Fig. 5) show
that for some combination of stiffener dimensions and spacing, it is
possible to encounter a combined mode of deformation that involves
twisting, wrinkling and concertina folds. This trend was also observed
in some experimental results [48,49]. Formation of more concertina
folds within longer thin-walled sections is observed for some samples
(see Fig. 5), while for others (e.g., 12 and 21) the thin-walled section is
not long enough to allow the formation of two concertina folds. In
these thin-walled sections, firstly, two stationary plastic hinges, one at
top edge and the other at a long distance from the bottom edge, along
with a moving plastic hinge at their mid distance are formed. Then, a
concertina fold is shaped near the top edge of the thin-walled section.
This is followed by compression of the rest of the material between
the bottom edge and the formed concertina fold that causes the
formation of wrinkles. Formation of diamond folds is observed in
samples 2 and 35. This is because of the geometry of the thin-walled
sections that is not appropriate for the formation of concertina
folds.
3. Optimization problem description

The three principal factors we considered in the design optimiza-
tion of ring-stiffened cylindrical crush tubes are energy absorption,
weight and maximum crush force. Since an SEA represents the ratio of
total energy absorption to the tube mass, it allows two of the factors to
be represented by a single metric. Both single-objective constrained
and multi-objective optimization problems are considered in this
section in order to show the impact of the problem formulation on the
optimization results.

The tube design problem can be modeled using two different
single-objective constrained optimization problems. In the first
model, the optimum values of the four geometric parameters in
Fig. 1 are sought that would

Maximize f1 ¼ SEAðXÞ

s:t: PmaxðXÞrPC
max

XLrXrXU ð6aÞ

where Pmax is the maximum crush force with an upper bound of
Pmax

C . In the second model, we seek the optimum values of design
variables that would

Minimize f2 ¼ PmaxðXÞ

s:t: SEAðXÞZSEAC

XLrXrXU ð6bÞ

where SEAC is the lower bound on SEA and X represents the vector of
design variables (i.e., XT

¼ ½w, S, d, t�) with XL and XUas the corre-
sponding lower and upper bounds, respectively.

In the multi-objective optimization problem, a compromise
or Pareto optimum solution is sought with the goal of pushing
towards the point of Utopia resulting in SEA maximization and Pmax

minimization. Several methods have been developed for the solution
of multi-objective design optimization problems by searching for the
non-dominated design points that form the Pareto frontier in the
criterion space [50,51]. As an alternative, utility function, inverted
utility function, global criterion, or the compromise programming
method [52] may be used to combine two or more objectives into a
single composite objective function. Based on the value of weight
factor assigned to each objective, the designer’s preference towards a
particular point on the Pareto frontier is established. Using the com-
promise programming approach, the optimization problem would be
defined as

Minimize
m f W

1
�f T

1ð Þ
f1�f T

1ð Þ

� �2

þ
ð1�mÞ f2�f T

2ð Þ
f W
2
�f T

2ð Þ

� �2
( )0:5

s:t: mA ½0, 1� and XLrXrXU ð7Þ

where the superscripts T and W denote the target and the worst
values, respectively, for each objective function. In the absence of
specific target and worst values for an objective, the extreme (best and



Table 4
Error estimation of RBF models.

Design objectives Method 1 (test points) Method 2 (design points)

R2 RMSE PRESS R2
prediction

SEA 0.969 0.0699 201.23 0.8277

Pmax 0.988 0.0407 1073.69 0.9354
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worst) single-objective optimization values may be used instead. In
Eq. (7), m is the weight factor for assigning different levels of
importance to each objective function.

Using the geometrical average of efficiency coefficients [53]
associated with the two objectives, we would find an alternative
formulation for the multi-objective optimization problem that can
be expressed as

Maximize Fg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dSEAdP

p
s:t: XLrXrXU ð8Þ

where dSEA and dp are efficiency coefficients of SEA and Pmax,
respectively. To maximize SEA in Eq. (8), dSEA is calculated in terms
of the relative distance to its worst value as

dSEA ¼
f1�f W

1

f T
1�f W

1

ð9Þ

To minimize Pmax, dp is calculated as

dp ¼ 1�
f2�f W

2

f T
2�f W

2

ð10Þ

Hence, with changes in design variables, dSEA and dp can take any
value in the interval [0,1]. When the overall efficiency function, Fg,
reaches one, the corresponding objective function reaches the
optimal solution, whereas Fg¼0 indicates the worst solution.
4. Surrogate modeling

Radial Basis Functions (RBF) [42,44,54] are used to establish
surrogate models (metamodels) to represent the relationships
between the individual objective functions (SEA and Pmax) and
the design variable vector XT

¼ ½w, S, d, t� over the entire design
space bounded by the side constraints. Given the design variable
vector and response values at n arbitrary design (training) points,
an RBF approximation of the response function f(X) derived from an
FE simulation (‘‘exact’’ response) can be found as

~f ðYÞ ¼
Xn

i ¼ 1

lif :Y�Yi:
� �

ð11Þ

where Y is the vector of normalized design (input) variables with Yi

representing the normalized coordinates of the ith training point,

ri ¼ :Y�Yi:¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðY�YiÞ

T
ðY�YiÞ

q
is the Euclidean norm representing

the radial distance from any arbitrary design point to the ith

training point,f is a radial symmetric basis function, and li, i¼1 are
the unknown interpolation coefficients. Eq. (11) represents a linear
combination of a finite number of radial symmetric basis functions.

Commonly used RBF formulations include: thin-plate spline
[f(r)¼r2 log(r)], Gaussian [fðrÞ ¼ ear2

, a40], multiquadric ½fðrÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þc2
p

� and inverse multiquadric½fðrÞ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þc2
p

�. With nor-
malized input variables, r falls in the range of (0, 1) with 0ocr1.
The choice of basis function and tuning parameter c is problem
specific.

Four error metrics are used for the assessment of metamodel
accuracy. Since RBF is an interpolation model, six randomly
selected design points (different from any of the training points)
within the global bounds of each design variable are used as test
points for the evaluation of R2 and RSME statistics defined as

R2 ¼ 1�
SSE

SST
ð12Þ

RMSE¼

ffiffiffiffiffiffiffiffi
SSE

m

r
ð13Þ
where SSE (sum of square errors) and SST (total sum of squares) are
calculated as

SSE¼
Xm
j ¼ 1

fj�
~f j

h i2
ð14aÞ

SST ¼
Xm

j ¼ 1

fj�f j

h i2
ð14bÞ

where m is the number of test points, fj is the FEA-based response
value at the jth test point, ~f j is the corresponding approximate
value calculated by the RBF model, and f j is the mean value of all fj00 ,
j¼1, m.

The other two error statistics considered are prediction error
sum of squares (PRESS) and R2 for prediction (R2

prediction) at the
training points calculated as

PRESS¼
Xn�1

i ¼ 1

fj�
~f ð1Þ

h i2
ð15Þ

R2
Prediction ¼ 1�

PRESS

SST
ð16Þ

where ~f ð1Þis the predicted value at the ith training point, using the
RBF model created by (n�1) training points that exclude the
ith point.

4.1. Evaluation of RBF model accuracy

For both design objectives (SEA and Pmax), we checked different
RBF models and found that multiquadric with c¼0.001 gives the
most accurate metamodels. For the overall accuracy of each
metamodel, the error metrics mentioned earlier are used.

For PRESS and R2
Prediction error evaluations, we checked the

predictability of responses derived from constructed RBF models
for 47 design points. Although a large number of training points is
used for construction of each RBF metamodel, it is possible for some
of the error metrics to provide unreliable predictions. For example,
Fang and Want [55] have shown that for some responses, the
error predictions based on PRESS and R2

Prediction may not provide
accurate error estimates for RBF models. For R2 and RMSE error
evaluations, 6 out of the 48 initial design points (i.e., 5, 10, 15, 20, 30
and 40) are selected as test points with the remaining 42 treated as
training points for the calculation of coefficients, li.

The error estimates are given in Table 4. As it can be seen, large
values for R2 and R2

Prediction and small values for RMSE and PRESS

indicate reasonable accuracy of the constructed RBF surrogate
models for both design objectives.

To validate the metamodel-based optimization results, FE
simulations of the optimum designs will be performed to deter-
mine the true error in the response predictions.
5. Design optimization results

Due to the availability of analytical surrogate models for SEA and
Pmax and a relative small set of design variables, we used Genetic
Algorithms (GA in Global Optimization toolbox of MATLAB) to



Table 6

Minimization of Pmax with constraint on SEAZ24kJ=kg.

Optimal design variables SEA (kJ/kg) Pmax (kN)

N d (mm) t (mm) S (mm) w (mm)

7 0.942 1.869 31.178 3.969 24.693 138.005
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setup and solve all optimization problems. A stochastic search
approach such as GA offers a viable strategy to explore different
regions of the design space in search of the global optimum design
point. First, a random population of 20 design points is selected
based on the specified bounds on the design variables. The
scattered cross-over fraction is set at 0.8, and constraint dependent
option is adopted for the mutation function.

For linearly constrained optimization problems, the GA solver in
MATLAB identifies active linear constraints and bounds to generate
search directions, or mutants for the GA. For non-linearly con-
strained optimization problems, it formulates a subproblem sub-
ject to linear constraints and bounds, using penalty and Lagrange
parameters. Once an approximate solution to the subproblem is
found, the penalty and Lagrange parameters are updated for a new
subproblem, and the solution process continues until convergence
at a specified accuracy is reached.

Here, the solution of constrained single-objective and uncon-
strained multi-objective optimization cases for a specific weight
factor (Eq. (7)) required 6 and 53 iterations, respectively, with each
iteration of the constrained single-objective problem taking con-
siderably more time than the unconstrained multi-objective
optimization problem.
5.1. Constrained single-objective optimization

SEA and Pmax are the main competing criteria affecting the
design of stiffened crush tubes. With the lower and upper bounds
on each design variable defined, Eq. (6) can be used to formulate
two separate but related single-objective constrained optimization
problems formulated as

Maximize f 1 ¼ SEA S, w, t, dð Þ

s:t: PmaxðS, w, t, dÞr145kN

17:85mmrSr83:3mm

0mmrwr31:25mm

0mmrdr3mm

1mmrtr2:6mm ð17Þ

Minimize f 2 ¼ Pmax S, w, t, dð Þ

s:t: SEA S, w, t, dð ÞZ24kJ=kg

17:85 mmrSr83:3mm

0 mmrwr31:25mm

0mmrdr3mm

1mmrtr2:6mm ð18Þ

The constraint bounds for Pmax in Eq. (17) and SEA in Eq. (18) are
based on the desire to have large values for SEA and moderate
values for Pmax. Therefore, we selected the bounds for Pmax at 75%
and SEA at 90% of the corresponding maximum values in Table 2,
respectively. Eqs. (17) and (18) are solved for three different values
of N (i.e., 3, 5 and 7).

In MATLAB, the established RBF surrogate models relating Pmax

and SEA to design the variable vector are placed in separate M-files to
account for the presence of design constraints in the optimization
problem described in Eqs. (17) and (18), respectively. The solutions for
these optimization problems are given in Tables 5 and 6. With
Table 5
Maximization of SEA with constraint on Pmaxr145 kN.

Optimal design variables SEA (kJ/kg) Pmax (kN)

N d (mm) t (mm) S (mm) w (mm)

7 0.927 1.916 31.178 3.969 24.693 138.005
consistent constraint bounds, the solutions are nearly identical. The
only minor difference is in the values of d and t. The larger number of
stiffeners (N+1¼8) enhances the structural characteristics of the
stiffened tube. It should be noted that the wall thickness in the
stiffened regions is d+t.

5.2. Multi-objective optimization using compromise programming

method

Multi-objective optimization problem accounts for the inter-
action between competing design criteria [52] in search of Pareto
optimal solutions. Using the compromise programming method,
the multi-objective optimization problem is expressed as

Minimize
mSEA�

SEAðS, w, t, dÞ

� �2

þ
ð1�mÞPmaxðS, w, t, dÞ

P�

� �2
( )0:5

s:t: mA ½0, 1�
17:85mmrSr83:3mm

0mmrwr31:25mm

0mmrdr3mm

1mmrtr2:6mm ð19Þ

where SEA* and P* are the normalization values for SEA and Pmax,
respectively. Different combination of weight factors in Eq. (19)
gives different optimum design points on the Pareto frontier in the
criterion space. The weight factor is varied in the range 0–1 at 0.1
increments resulting in the Pareto frontier shown in Fig. 11. Note
that based on the formulation of Eq. (19), SEA�=SEAðS, w, t, dÞ is
minimized for maximizing SEAðS, w, t, dÞ. The merit of Pareto set is
that it provides a range of optimal solutions depending on the level
of preference designer places on different objectives.

The results for different optimization problems and solution
techniques are shown in Fig. 11. Of the eleven points corresponding
to the solution of Eq. (19) with varying weight factor, some give
very close answers and are not distinguishable in the figure. The
solutions for Eqs. (17) and (18) overlap in the criterion space. The
location of the multi-objective optimum point corresponding to
Eq. (19) and m¼0.4 (details summarized in Table 7) is also shown.
For comparison, the GA based multi-objective optimization solver
of Matlab is also used to generate the Pareto frontier points marked
as MOGA in Fig. 11. The results from Eq. (19) are found to be in very
good agreement with those corresponding to MOGA.

5.3. Multi-objective optimization using geometrical average method

The multi-objective optimization problem is formulated as

Maximize FgðS, w, t, dÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dSEAdP

p
s:t: 17:85mmrSr83:3mm

0mmrwr31:25mm

0mmrdr3mm

1mmrtr2:6mm ð20Þ

dSEA ¼
SEAðS, w, t, dÞ�SEAL

SEAU
�SEAL

ð21Þ



Fig. 11. Comparison of results for different optimization problems and solution

techniques.

Table 7
Multi-objective minimization results using compromise programming with m¼0.4.

Optimal design variables SEA (kJ/kg) Pmax(kN)

N d (mm) t (mm) S (mm) w (mm)

7 0.864 1.836 32.210 3.060 23.9 134.3

Table 8
Multi-objective optimization results using the geometrical average method.

Optimal design variables SEA

(kJ/kg)

Pmax

(kN)

Fg dSEA dp

N d (mm) t (mm) S (mm) w (mm)

5 1.428 1.001 41.713 6.906 18.000 68.720 0.656 0.672 0.640

Table 9
Comparison of RBF predicted optima with FEA simulation results.

Solution for

Eq. #

SEA (kJ/kg) Pmax (kN)

RBF FEA % Error RBF FEA % Error

17 24.693 24.996 1.21 138.005 138.060 0.040

19 23.900 23.330 2.44 134.300 132.210 1.581

20 18.000 17.131 5.07 68.720 68.622 0.143

Fig. 12. Crush pattern of an optimal model found from (a) Eq. (17), (b) Eq. (19) with

weight factor of 0.4 and (c) Eq. (20).
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dp ¼ 1�
PmaxðS, w, t, dÞ�PL

PU�PL
ð22Þ

where SEAU, SEAL and PU, PL represent the upper and lower bounds
on SEA and Pmax, respectively. The ideal values of efficiency
coefficients (dSEA, dp) and overall cost function,FgðS, w, t, dÞ, are 1.

The results for this problem are summarized in Table 8 with the
corresponding optimum point shown in Fig. 11. It can be seen that
the optimization result of geometrical average method corre-
sponds to a specific point on the Pareto frontier. As Table 8 shows,
the values for dSEA and dp are nearly the same, indicating that the
optimal solution does not strongly favor one objective over the
other. However, the method does not give the same solution as
the constrained single-objective optimization problem. The opti-
mum value for N is also different than those found in the other
optimization problems.
5.4. Verification of optimum design with FE simulations

Estimated optimal values of SEA and Pmax derived from solutions
of Eqs. (17), (19) (using weight factor of 0.4) and Eq. (20), using RBF
surrogate models given in Table 9. The corresponding exact values
found from FE simulations are also given in Table 9 to measure the
accuracy of RBF based designs. The optimization results are found
to have reasonably good accuracy with slight over- or under-
predictions of the estimated responses, as indicated by a maximum
error of approximately 5% in SEA and 1.6% in Pmax predictions.
Collapsed shapes of optimized stiffened tubes are shown in
Fig. 12. It appears that the solutions from Eqs. (17), (19) and (20)
result in different collapse modes of deformation. Whereas the
deformation response in Fig. 12(a) is fairly uniform; we see some
lateral bending towards the final stages of the collapse in Fig. 12(b)
and mixed wrinkling, twisting and concertina folds in Fig. 12(c).
6. Conclusion

The quasi-static axial collapse response of circular tubes with
externally machined stiffeners was investigated using an explicit
nonlinear finite element analysis. The size and spacing of the ring
stiffeners were found to play an important role in determining the
crush mode as well as the specific energy absorption and the peak
crush force of the stiffened tube. The addition of external stiffeners
is effective in changing the crush mode from global buckling to
progressive plastic collapse.

Through design and analysis of computer experiments, separate
surrogate models were developed using an RBF approximation.
Both single- and multi-objective optimization problem formula-
tions were used to find an optimal geometric design that results in
maximum specific energy absorption and minimum peak crush
force. The results show that the externally stiffened circular tubes
are considerably more efficient than a prismatic circular tube in
terms of energy absorption, stroke efficiency and structural weight.
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