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Review of Hierarchical Multiscale
Modeling to Describe the
Mechanical Behavior of
Amorphous Polymers
Modern computational methods have proved invaluable for the design and analysis of
structural components using lightweight materials. The challenge of optimizing light-
weight materials in the design of industrial components relates to incorporating
structure-property relationships within the computational strategy to incur robust de-
signs. One effective methodology of incorporating structure-property relationships within
a simulation-based design framework is to employ a hierarchical multiscale modeling
strategy. This paper reviews techniques of multiscale modeling to predict the mechanical
behavior of amorphous polymers. Hierarchical multiscale methods bridge nanoscale
mechanisms to the macroscale/continuum by introducing a set of structure-property re-
lationships. This review discusses the current state of the art and challenges for three
distinct scales: quantum, atomistic/coarse graining, and continuum mechanics. For each
scale, we review the modeling techniques and tools, as well as discuss important recent
contributions. To help focus the review, we have mainly considered research devoted to
amorphous polymers. �DOI: 10.1115/1.3183779�
Introduction

As energy consumption becomes a larger concern for industry
nd consumers, a significant amount of research is devoted to
aving fuel and reducing the cost of production. Developing new
ightweight materials, such as magnesium alloys and polymers, is
ne method of cutting fuel use, particularly in industries associ-
ted with transportation. One class of such lightweight materials is
morphous polymers. They are important engineering materials
idely used in industry because of their physical, optical �light

ransparence�, and mechanical properties �toughness�. Further-
ore they are relatively inexpensive. Along with cutting energy

osts, designers also seek to reduce the amount of expensive me-
hanical testing, e.g., crash tests, as well as time consuming ma-
erial testing encompassing a wide variety of environmental and
oading conditions. Computational methods offer an excellent op-
ortunity to cut cost and predict material response over a much
arger range of conditions that could ever be examined through
xperiments. In order to predict material properties over large
anges of temperatures, strain rates, and stress states, material mi-
rostructure and underlying molecular mechanisms must be un-
erstood. Multiscale modeling is one such computational tech-
ique that incorporates properties associated with the smallest
ength and time scales into the design of components �1�. For the
ase of metals, multiscale modeling has been rigorously devel-
ped and has proven fruitful in the development of automotive
omponents �2,3�. There are two types of multiscale models: con-
urrent and hierarchical. The former contains multiple models in a
ingle simulation that run seamlessly and pass information be-
ween each other through a “hand shaking” procedure �4–6�,
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while hierarchical modeling uses separate simulations to compute
structure-property relations at one length scale in order to pass the
“effect” to higher length scales �1–3,7�.

As depicted in Fig. 1, different length and time scales are asso-
ciated with a multiscale modeling methodology. At the smallest
scale is quantum mechanics, with relevant lengths of angstroms
and time scales of 10−15 s, while at the largest scale �continuum
mechanics� lengths can exceed meters and the times can approach
years �in some cases, 109 s�. For the case of metals, the length
scales have been nearly linked—through different mechanisms,
dislocations for plasticity, and voids/particles for fracture �8�. The
hierarchical multiscale modeling scheme for metals includes en-
ergy potentials determined from quantum mechanics �QM� that
atomistic simulations use to examine dislocation nucleation, mo-
bility, and interactions. Discrete dislocation dynamics then use the
dislocation mobilities found from atomistic simulations to study
dislocation networks and structure development for work harden-
ing. As such, the outputs from dislocation dynamics then assist in
developing polycrystalline plasticity work hardening models and
ultimately macroscale continuum level internal state variable
�ISV� models for use in component level simulations.

For amorphous polymers, hierarchical modeling is in a fairly
primitive state relative to their metallic counterparts. Length and
time scales encountered in polymers range over several orders of
magnitude. The lengths scales associated with a single polymer
chain include a single chemical bond ��10 nm�, the persistence
length, or the Kuhn length �9� of the polymer that consists of a
segment of the polymer chain with several chemical bonds ��100
nm�, and the radius of gyration �Rg� ��1000 nm� �10�. Additional
length scales are encountered in polymer melts comprising mil-
lions of polymeric chain molecules. The associated time scales for
the relaxation phenomena of the entangled polymer chains also
add complexity to multiscale modeling. The relaxation of polymer
chains is temperature and pressure dependent and involves differ-
ent modes of motions. At the smaller length scales, vibrations of a

single C–C bond �for example, in polyethylene �PE�� or the bond
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ngle � ��10−13 s� occur alongside torsional gauche-trans trans-
ormations, which happen at a much slower rate ��10−11 s� �10�.
he aforementioned motions contributing to the conformational or
ntropy changes lead to short length relaxations but do not equili-
rate the persistence length and radius of gyration of the polymer.
ince polymers do not have a single deformation mechanism,
uch as dislocations, to be followed through all length scales and
eformation mechanisms span larger length and time scales, the
roblem of multiscale modeling is a larger more complex task.
he huge span of length and time scales exhibited by polymers is
perfect example for the importance of multiscale modeling in

hese materials.
This review will focus on the current state of hierarchical mul-

iscale modeling to describe the mechanical behavior of amor-
hous polymers, primarily an amorphous PE and polycarbonate
PC�. A variety of polyethylenes exist depending on the extent of
hain branching, which in turn influences the degree of crystallin-
ty. However, this review is focused on an idealized linear amor-
hous PE. Section 2 covers computational chemistry using quan-
um mechanics to determine structures and properties for
tomistic simulations. Next, in Sec. 3, we review associated mo-
ecular dynamic simulations. This section also includes a brief
iscussion of several coarse-graining methods with a particular
ocus on bead-spring methods. Section 4 covers continuum meth-
ds, specifically internal state variable models. Each section con-
ains information on theory, modeling techniques, current state of
he art, and a discussion of the information that is passed to the
ext length scale.

Quantum Mechanics
The foundation of multiscale modeling is based on QM. QM

Fig. 1 Schematic of a general hierar
alculations provide the essential parameters such as bond
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lengths, bond angles, dihedral angles, and force field potentials
essential for describing the interactions between the building
blocks in polymer materials. Developing interatomic potentials
based on conformations and energies calculated using QM creates
a method for performing molecular simulations, which provide
accurate polymers material properties. This section focuses on the
smallest length and time scales associated with QM. We begin by
discussing the fundamental background of quantum mechanics
followed by a brief introduction of ab initio and semi-empirical
quantum mechanics, followed by a section describing in detail the
density functional theory �DFT� as one method for solving QM
problems. We finally discuss some current work conducted using
QM to model and understand polymers �Sec. 2.2� through infor-
mation passing techniques.

2.1 Quantum Mechanics Background. The basis for mate-
rial properties is related to the interactions of the electrons and
nuclei that comprise a structure. These interactions generally fol-
low the fundamental laws of QM. Quantum mechanical methods,
which are applicable for studying a wide range of physical prop-
erties in different systems, are based on solving for the wave
function from the Schrödinger equation �SE� �11�:

H� = E� �1�

where � is the wave function of the system, H is a Hamiltonian,
and E is an eigenvalue of the wave function.

For multi-electron systems, the Hamiltonian is very compli-
cated and solving for an exact solution is not practical. Thus, to
solve SE for the wave function and to study the physical proper-
ties of materials, nonempirical ab initio methods take advantage of
the Born–Oppenheimer approximation �BOA� �11–14�. The BOA
solves SE by considering the nuclear motion and electron motion

cal modeling approach for polymers
chi
independently �11�. Ab initio simulations can accurately deter-
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ine system energies, but these simulations are very computation-
lly expensive; thus, the models are restricted to a small number
f atoms, simulated for only a few picoseconds. Empirical or
emi-empirical quantum-mechanical methods have also been de-
eloped to predict material properties theoretically. Among the
M methods, the most commonly used ones for engineering ma-

erials are based on DFT.

2.1.1 Ab Initio Quantum Mechanical Methods. Ab initio
uantum-mechanical methods are based on solving for the wave
unction of electrons in the SE. In these methods, no empirical
ata are used. The simplest ab initio electronic structure calcula-
ion method is the Hartree–Fock �HF� method �11–13�. However,
he shortcoming of HF electron correlation is not considered. To
ddress this limitation, several methods called “post-HF” methods
11–18� were developed. Some of these important methods are the

øller–Plesset perturbation �MPn� theory �11–14�, configuration
nteraction �CI� �11–13,15�, coupled cluster �CC� theory
11–13,16�, multiconfiguration self-consistent field �MCSCF�
11–13,17,18�, and complete active space self-consistent field
CASCF� �11–13�.

2.1.2 Semi-Empirical Quantum Mechanical Methods. Semi-
mpirical quantum-mechanical methods are based on HF. How-
ver, some approximations are made and many parameters are
sed from empirical data. Another common feature of semi-
mpirical methods is that only the valence electrons are consid-
red. The important semi-empirical methods are complete neglect
f differential overlap �CNDO� �19–22�, intermediate neglect of
ifferential overlap �INDO� �23�, modified neglect of diatomic
verlap �MNDO� �24�, modified intermediate neglect of differen-
ial overlap �MINDO� �25�, and Austin Model 1 �AM1� �26�.
emi-empirical methods are fast compared with HF and post-HF
ethods. These methods are used to produce qualitative and quan-

itative results on larger molecules than are possible for ab initio
uantum methods. These methods are useful for predicting the
tructure and electronic properties of large organic molecules.

2.1.3 DFT. DFT �27–33� has proved to be a very powerful
uantum-mechanical method for investigating the electronic struc-
ure of atoms, molecules and solids, and is much simpler and less
xpensive, computationally, relative to other ab initio and semi-
mpirical quantum-mechanical methods �11,12�. DFT is essen-
ially based on two theorems of Hohenberg and Kohn �29,30�: The
round-state wave function, �, is a unique functional of the elec-
ron density ��r� and a defined energy functional is minimized by
he ground-state electron density �0. Applying the Hohenberg and
ohn theorems results in a total energy expressed by

E = T��� +� Vext��r�dr +
1

2�� ��r���r��
�r − r��

drdr� + Exc���

�2�

here T��� is the kinetic energy of a system of noninteracting
lectrons with density ��r�, Vext is the external potential of elec-
ron and neutron interactions, the third term corresponds to
lectron-electron interaction potentials, and Exc��� is the electron
xchange-correlation energy of an interacting system with density
�r� at position r. Kohn and Sham �30� then showed that sum-
ing the squares of the wave function solutions of N noninteract-

ng Schrödinger equations give the charge density

��r� = �
i=1

N

��i�r��2 �3�

here �i�r� is the wave function for Schrödinger equation asso-

iated with electron i or

ournal of Engineering Materials and Technology

om: http://materialstechnology.asmedigitalcollection.asme.org/ on 03/26/2
�− 1
2�2 + veff�r���i�r� = �i�i�r� �4�

where veff is the effective external potential and �i are the eigen-
values, which have no physical meaning on their own but the sum
is related to the total energy through

E = �
i

N

�i − VH��� + Exc��� −� �Exc���
���r�

��r�dr �5�

One source of inaccuracy from these methods is the definition
of the exchange-correlation energy. For an arbitrary ��r�, the ex-
act expression for Exc��� is unknown. However, if ��r� varies
sufficiently, one can write

Exc��� =� ��r��xc���r��dr �6�

where �xc��� is the exchange and correlation energy per electron
of a uniform electron gas of density �.

Several approximations for the exchange-correlation energy
have been developed to make DFT applicable for materials sci-
ence. The most successful exchange-correlation approximations
are local density approximation �LDA� �30,31� or local-spin-
density approximation �LSDA� �34�, and generalized gradient ap-
proximation �GGA� �31,34�. LSDA determines the exchange-
correlation energy by assuming that the exchange-correlation
energy �xc for an electron at a point r in the electron gas is equal
to the exchange-correlation energy per electron in an electron gas
of uniform spin densities of �↑, �↓ �the arrow indicates the spin
direction�:

Exc
LSDA��↑,�↓� =� ��r��xc

unif��↑,�↓�dr �7�

where �xc
unif��↑ ,�↓� is the exchange-correlation energy per unit vol-

ume of a homogeneous electron gas of density ��r�.
LSDA, in principle, ignores corrections to the exchange-

correlation energy at a point r due to nearby inhomogeneities in
the electron gas �35�. To improve the error of LDA or LSDA, a
more accurate GGA �17,19,20� was developed. The exchange-
correlation energy term for GGA is

Exc
GGA��↑,�↓� =� ���↑,�↓,��↑,��↓�dr �8�

where �� is the gradient of the electron density. The GGA is more
accurate than LDA for predicting the properties of materials.

Other DFT methods used for predicting materials properties are
m-GGA �36�, hyper-GGA �37�, and hybrid density functional �38�.
Approximations involving gradient corrections that have been
studied extensively include the exchange functionals B �Becke�
�39�, FT97 �Filatov–Thiel� �40�, mPW �Adamo–Barone� �38�, and
the correlation functionals of P �Perdew� �32� and of LYP �Lee–
Yang–Parr� �41�, PBE �Perdew–Burke–Ernzerhof� �42�, and
PW91 �Perdew-Wang� �43�. Combinations of these forms for the
exchange and correlation energy are often referred to as “BP” and
“BLYP,” “BPW91” approximations. In a hybrid functional, a mix-
ture of HF exchange and GGA exchange is used in combination
with GGA and/or LDA correlation. For instance, the most widely
used hybrid functional is B3LYP �Becke three-parameter hybrid
functional combined with LYP functional� �44�.

DFT is one theory in which the material’s energy is expressed
as a function of the electron density or spin density. The DFT
within LSDA and GGA, in general, works well for ground-state
properties of moderately correlated systems such as total energies,
energy difference, cohesive energies, atomization energies, sur-
face energies, energy barrier, atomic structure, and magnetic mo-
ments of real materials �32–34�. Density functional calculations
also provide a method of calculating structural, electronic, and

binding properties of molecules. Yet, DFT methods have limita-
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ions when predicting the excited state and spectroscopic proper-
ies of the systems. For example, band gaps of semiconductors are
xtremely underestimated because they are related to the proper-
ies of excited states �45,46�.

2.2 Current State of Quantum Mechanics in Multiscale
odeling of Polymers. Here we discuss a few examples of ap-

lying quantum mechanics for predicting properties and passing
hem to higher length scales. One of the most important polycar-
onates is bisphenol A polycarbonate �BPAPC�. With outstanding
ptical and mechanical properties, BPAPC is an important mate-
ial for manufacturing and design. With respect to multiscale mod-
ling, one major interest of studying BPAPC is the influence of
hain segment motion on intermolecular interactions. The �-flip
f the phenylene rings in immobile �47� and mobile �48� forms is
he central issue in BPAPC and its analogs. Only a few quantum-

echanical calculations done on polycarbonates and their analogs
ave been performed with the aim to generate force fields of
PAPC �49–59�.
Many studies using quantum mechanics have focused on the

tructure and energies of polycarbonate dating back to the early
960s �49�. The primary focus of these studies was to calculate
round-state conformational energies and ring flips of the phenyl
ing �50–59�. Overall, the DFT calculations of ground-state geom-
tries, vibrational frequencies, and energy barriers showed good
greement with available experimental results. With respect to
ultiscale modeling, QM creates the foundation for the higher

ength scales. Developing interatomic potentials based on QM es-
ablishes the link to the next length scale. Not all developed inter-
tomic potentials incorporate information from QM but a few
ave successfully created potentials based on QM �60–65�. Early
ttempts at creating accurate potentials from QM fit predeter-
ined functions �similar to the form discussed later in Sec. 3.2.2�

o a theoretical Hessian and experimental data �62�. This early
ork also used empirical formulations to develop nonbonded van
er Waals interactions. Using a combination of QM and empirical
ethods has benefits since the weak nonbonded interactions are

ery difficult to calculate using QM techniques �63�. Later simu-
ations included other optimization criterion including elastic con-
tants and internal stresses �65� in addition to the QM quantities.
he previously mentioned potentials were generally used for
imple linear polyethylene like polymers but are not limited to
hem. For more complicated polymers, such as PC, the potentials
hould take into account the energy barriers for more complicated
onformation changes, like the phenyl ring flip �61�. This gives
ust a sample of the different potentials developed over the years.

detailed description of the form for one potential is given in
ec. 3.2.2. Refining and increasing the accuracy of the predictions
or the material response are a continuing effort. These QM in-
ormed potentials are now a useful input for running larger mo-
ecular simulations such as atomistic and coarse-grain methods at
he micro- and macroscales.

Atomistic-Mesoscale Modeling: Molecular Dynam-
cs and Coarse Graining

This section will describe the techniques and current state of
odeling polymers as a series of interacting particles using MD.
ere, the discussion will begin with an overview of MD theory.
D includes both general atomistic models where every atom is

epresented by a particle as well as coarse-grained models, which
se a single particle to describe the motion of several atoms. The
heory is followed by methods for creating initial structures of
morphous polymers and descriptions of the atomic potentials
sed to describe the interactions between particles. Following the
heory, we present a sample of other coarse-graining techniques. A
ew statements then address the issue of bridging time scales.
ection 3.1 describes the current state of the atomistic modeling
hile Sec. 3.4 reviews some of the current “bottom-up” hierarchi-
al methods that use MD.
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3.1 Molecular Dynamic Modeling Theories. Molecular dy-
namics modeling follows the motion of a collection of particles
through time and space by numerically integrating Newton’s
equations of motions. In order to progress the simulation in time,
the energy for the entire system is expressed as a series of inter-
actions between particles �the interaction potentials are described
in detail in Sec. 3.2�. The forces on each particle are then deter-
mined by taking the derivative of the system energy, E, with re-
spect to the position vector for a particle pair, ri, as fi=�E /�ri.
Once the forces on each particle due to the interaction of the other
particles in the system are determined, the equations are integrated
using any number of schemes, most notably the Verlet �66� and
Gear velocity operator methods �67�. These schemes are shown to
be stable and conserve energy very well relative to other methods
�67�. MD in the simplest form addresses problems consisting of a
constant number of atoms, volume, and energy, NVE. Examining a
system of constant energy and volume limits the possible data that
is collected from the model. To expand the sample space for MD
simulations, a series of methods has been developed that allow for
temperature and pressure control of the system, such as nvt
�68,69�, constant number of atoms, volume, and temperature, and
NPT, constant number of atoms, pressure, and temperature, dy-
namics. For further explanation of the molecular dynamics models
and methods of running these simulations, see Ref. �67�. Not all
dynamic models are limited to interactions between single atoms
but can be extended to larger molecules, comprising several at-
oms, interacting with other large molecules. These larger length
scale models, or coarse-grained models, include a united atom
motion, which generally combines two to four atoms into a single
particle �70–75�, and bead-spring methods, which combine many
more groups of atoms into particles and springs �76–80�. One
example of the software that includes many potentials and a ma-
jority of the machinery necessary to perform MD simulations is
large-scale atomic/molecular massively parallel simulator �LAM-

MPS� �81�. LAMMPS is free to download and is capable of modeling
full atomistic simulations and some bead-spring type models.

3.2 Modeling Details

3.2.1 Initial Structures. An important component of atomic
simulations of polymers is the initial position of the particles. In
order to have a “statistically” representative initial structure, the
conformations should have a Boltzmann distribution at the defined
temperature. For the simple case of polyethylene, one method to
create an initial structure is a Monte Carlo �MC� random walk,
which randomly selects an initial start position and then grows
each chain according to a probability for each possible direction
of growth. The probability is determined by the local density of
neighbor particles, as well as the resulting conformation �82–84�.
These methods become more complicated when introducing
cross-links into the system, but similar growths can be performed
to generate cross-linked materials. More complicated polymers
such as polycarbonate use the same methodology requiring a Bolt-
zmann distribution of the conformations from a Monte Carlo ran-
dom walk �77,78�.

3.2.2 Interatomic Potentials. As described in Sec. 2, MD
simulations require an accurate interatomic potential. Mayo et al.
�85� developed a generic potential, the Dreiding potential, to de-
scribe interactions between most nonmetallic elements. Unlike
other atomic potentials, the Dreiding potential does not depend on
the particular type of atoms in the bonding but rather on the type
of bonds present. The potential is described by individual force
constants and geometric parameters that depend on the bond hy-
bridization and effectively models all combinations of atoms. This
potential has two components: the valence or bonded interactions
�Eval�, for atoms chemically bonded to one another, and the non-
bonded interactions �Enb�, for the interactions not chemically
bonded to one another. The total energy is expressed as the sum of

these two terms:
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E = Eval + Enb �9�
The valence term of the energy is further broken up into the

um of four types of bonded interactions: bond stretch �EB�, bond
ngle bend �EA�, dihedral angle torsion �ET�, and inversion terms
EI�. The nonbonded interactions also consist of the sum of sev-
ral components such as, but not limited to, van der Waals �EvdW�,
lectrostatic �EQ�, and hydrogen bonds �Ehb�.

Each bonded component of the energy has a multitude of forms
o express the energy, but here the focus will be those presented
y Mayo et al. �85�. The bond stretch is a two body interaction,
here only two particles are involved in the energy calculation,
sing a harmonic formulation:

EB = 1
2ke�R − Re�2 �10�

here ke is the force constant, R is the bond length, and Re is the
quilibrium bond length. Another potential mentioned for the
ond stretch is the Morse �86,87� potential, which is more accu-
ate and allows for bond breaking at an energy of De.

EB = De�e−�	R−R� − 1�2 �11�

n this case the force constant is expressed as 	= �ke /2De�1/2. For
he angle �ijk between bonds, IJ and JK, a simple harmonic is
gain used to express the energy as the following:

EA = 1
2CIJK�cos �IJK − cos �J

0�2 �12�

his is a three-body interaction involving the three nearest neigh-
ors in the calculation, where CIJK is the force constant, and �J

0 is
he equilibrium angle from either known equilibrium structures or
uantum mechanics simulations.

The torsion interaction, a four-body term, is expressed as

ET = 1
2VJK	1 − cos�nJK�� − �JK

0 ��2
 �13�

he dihedral angle, �, is the angle between the IJK and JKL
lanes, nJK is the periodicity, VJK is the energy barrier to rotation,
nd �JK

0 is the equilibrium rotation. In the case of polyethylene,
hree possible minima exist: one trans and two gauche conforma-
ions. The Dreiding potential captures the conformation distribu-
ion very well.

Since the inversion term is not always applicable, the inversion
nergy can also be represented by a harmonic similar to Eqs. �10�
nd �11�. While the nonbonded interactions can contain many
omponents including electrostatics and hydrogen bonding, we
ill only address the van der Waals component. The van der
aals interaction, just as the other components, can have a range

f forms but is usually expressed as either a 12–6 or a 9–6
ennard-Jones �67,88� potential. A Lennard-Jones 12–6 type is
iven by the following:

Eij,vdW = 4��� 


rij
12

− � 


rij
6� �14�

here � is the energy well of the potential, 
 is the zero energy
pacing for the potential, and rij is the distance between particles
and j.
Mayo et al. �85� included an extensive list of values for all of

he constants included in each potential, for many different types
f hybridization and initial structures. With the Dreiding potential
nd many others, a wide range of molecules can be modeled for
ystems containing �106 atoms or “united atoms” on parallel
omputers. The most generic united atom model lumps the H
toms associated with each C backbone atom of polyethylene cre-
ting a single united atom for each methyl group. As an example,
f computational costs, running LAMMPS �81� on 128 processors at
ississippi State University’s Center for Advanced Vehicular Sys-

ems 106 atoms simulated for 1 ns takes 72 h.
The Dreiding potential is not limited to single atom-atom inter-

ctions but can be extended to molecule-molecule interactions,

lso known as the united atom methods. The most generic united

ournal of Engineering Materials and Technology

om: http://materialstechnology.asmedigitalcollection.asme.org/ on 03/26/2
atom model lumps the H atoms associated with each C backbone
atom of polyethylene creating a single united atom for each me-
thyl group.

With the potentials developed using QM methods including the
aforementioned Deidre as well as CHARMM �89,90�, AMBER �91�,
and many others not mentioned here, a number of different poly-
mers are now modeled at the atomistic level. These potentials
capture structure and energetic barriers very well but some limi-
tations do exist in the prediction of the van der Waals and non-
bonded interactions. Also, terminal methyl groups are modeled the
same as the interior groups, which can lead to incorrect free vol-
ume predictions. Yet, atomistic MD simulations allow for simple
calculations to be performed on polymer melts and in some cases
mechanical properties of glassy amorphous linear polymers. Care
needs to be taken when these results are passed onto larger length
scales because the length and times scales limit the mechanisms
that are responsible for the majority of the viscoelastic/plastic
properties of the material, primarily reptation �92�. Reptation or
snakelike motion is one of the fundamental concepts of polymer
dynamics in entangled polymer systems, which is used to describe
many physical phenomena associated with viscoelastic responses
of these systems. For a detailed discussion on how to incorporate
the reptation theory and entropic effects associated with it in a
MD simulation of entangled polymer systems, the reader can refer
to Ref. �10�.

3.2.3 Coarse-Graining: Bead-Spring. In most cases the bond
stretch and bond angle potentials are very stiff relative to the
torsional and van der Waals potentials. Thus, often the bond
stretch and bond angle are considered rigid and allowing for fur-
ther coarse-graining as previously mentioned for polycarbonate.
Coarse-graining is a method of modeling that further increases the
length scales studied using MD but is still constrained by time
scaling. The coarse-graining methods discussed here will focus on
bead-spring methods; yet many other methods do exist including
Monte Carlo methods �93�, Brownian dynamics models �94�, and
dissipative particle dynamics �95�.

As previously stated, for simplicity, the bead-spring discussion
will focus on models for polycarbonate. The first bead-spring
methods were simple extensions of the united atom method �76�
and used Monte Carlo methods, as well as rotational isomeric
state models �96�, to create representative initial structures.
Tschöp et al. �77� developed a coarse-graining method for poly-
carbonate that implemented conformation distribution functions
dependent on different geometric characteristics of the polymer
chains. For this model, a polycarbonate chain was represented by
two types of particles, as shown in Fig. 2. The center of mass for
the two particles, S1 and S2, are centered on the geometric center
of isopropyldine group and the carbonate group, respectively.
Each distribution function is then directly proportional to the Bolt-
zmann factors of the generalized intrachain interaction potentials.
These potentials then generate tables for use in the united atom
method. Using these particular coarse-grained methods requires
no fitting parameters and the conformational properties of the
polymer remain. Yet, some issues can arise using coarse-graining,

Fig. 2 Mapping of a polycarbonate chain onto a two bead-
spring coarse-grain model
namely, generating the tables for each type of polymer over a
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ange of temperatures. Tschöp et al. �78� also presented a method
o reverse the coarse-graining that is useful to recapture the ato-

istic details of the polymer.
Meyer et al. �97� took the coarse-graining procedure a step

urther by focusing on the interparticle potentials and creating a
unction that correctly reproduces the radial distribution function
RDF� for the trajectory of the nonbonded particles during a poly-
er melt. The functions presented by Meyer et al. �97� are based

n a standard Lennard-Jones potential but include four to five
egrees of freedom for more interactions. Meyer et al. �97� also
resented a method for automating the process of generating the
istribution functions for the geometric distribution of the poly-
er chains. The automated process must be approached with care

ince predictions can give solutions to local structural minima
ather than the true global minimum.

Abrams and Kremer �98� later showed that issues arose with
oarse-graining polycarbonate using just two types of beads. Ar-
ifacts in the melt structure near interfaces appeared, but with
ntroducing two additional beads this problem was resolved.

any of the numerical artifacts arise from the relation of the bead
olume relative to the bond length �98,99�. This appears as a step
ack for the coarse-graining simulation process, but considerable
ncreases in the size of simulation still exist relative to full mo-
ecular dynamics.

While bead-spring modeling does simulate larger structures and
onger lengths of time, they are still extremely limited when it
omes to polymeric materials. Another class of coarse-grain mod-
ls includes MC simulations. Unlike MC simulations for metals,
olymers are not strictly limited to a predetermined lattice but
ather to local chain conformations that are probable �94�. MC
ethods advance the simulation according to a series of steps

ssociated with a jump rate that alters the conformation of the
hain by altering dihedral angles and chain-to-chain connectivity.
hese methods greatly decrease the amount of time it takes to

elax a structure and also allow for reptation processes to occur.

3.2.4 Other Mesoscale Models. The microscale to mesoscale
ridge often times is vaguely defined. The mesoscale is primarily
efined by the entropic considerations of the chain packing and
onformation �100�. Kremer’s definition of mesoscale models is
ssentially coarse-graining including the methods discussed
bove. A few examples of other mesoscale models include Brown-
an dynamics �BD� �79,101�, dissipative particle dynamics �DPD�
96,102–104�, and dynamic density functional theory �DDFT�
105� models for molecules in solvent. BD and DPD methods
ssentially work the same way as a bead-spring model but capture
iffusive effects typical for molecules suspended in solution. Fur-
hermore, DPD captures hydrodynamic effects because it con-
erves momentum. Removing the particles associated with the
uspending fluid and introducing a dissipative force greatly reduce
he computational requirements. DDFT models tend to focus more
n phase separation and copolymer evolution than on the me-
hanical response of a homopolymer. These models help bridge
he gap for many types of heterogeneous materials but do not
ignificantly advance the study of the polymers of interest here.

3.2.5 Time Scale Issues and Accelerated Dynamics. Differ-
nces in time scales for different mechanisms should always be a
onsideration when developing multiscale models. As previously
entioned, various mechanisms act up to ten orders of magnitude

ust to reach a relaxed state. For a melt of short nonentangled
olymer chains, the relaxation time of a polymer chain with an Np
egree of relaxation, �Np

, can be approximated by the Rouse
odel,

�Np
= �1Np

2 �15�

here �1 is the relaxation time for a polymer with a single repeat
nit �10�. This means that as chains increase in size, the compu-
ational time necessary to relax the system becomes unreasonable.

he situation becomes worse by introducing entanglements into
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the structure. For this case, reptation theory predicts a relaxation
time proportional to Np

3 as given by the following:

�Np
= �1�NP

Np
e Np

2 �16�

where Np
e is the number of repeating units required for the en-

tanglement �10�. For a moderate degree of polymerization, say,
Np=500, the relaxation time increases by almost eight orders of
magnitude ��10−5 s�. Therefore, MD simulations of polymer
systems would need enormous computer power and time if all
relevant relaxations are to be considered in full detail. The limi-
tations of current computational capabilities limit the amount of
time �a few nanoseconds� an MD simulation can run. Other op-
tions exist that have similar detail as MD, but they either increase
the amount of time simulated by the model or increase the fre-
quency of mechanisms that become active. Transition state theory
�TST� offers one method for resolving the time scale issue inher-
ent in MD �106�. TST computes motion in much the same way a
MC simulation does by jumping a system from one state to an-
other. The frequency of state changes the overall time scale of the
system at a rate much higher than the vibrations with in an energy
minimum. Unfortunately, TST requires some knowledge of the
states and the energy profile a priori. For most polymer simula-
tions, only a selected few state changes are known beforehand,
such as dihedral rotations or phenyl ring flips. Using only these
selected few state changes does not ensure that the material
progresses in time realistically. The shortcomings of TST led to
the development of other methods that do not require previous
knowledge of the deformation mechanisms. Hyperdynamics �HD�
or accelerated dynamics uses modifications to the energy profile to
move the dynamics along more quickly �107,108�. HD introduces
an energy bump to the well of an initial state. This method does
not limit the type of state change that can occur. The overall
system evolves in a realistic fashion only at an accelerated rate.
These simulations do lose the actual time progressed but time can
be statistically represented by the number of events that have oc-
curred. Two other models that do not work as well but require
mentioning are on-the-fly kinetic Monte Carlo �kMC� �109� and
temperature accelerated dynamics �TAD� �110�. kMC also re-
solves the requirement of knowing the deformation mechanisms a
priori. This model searches the entire energy space for any saddle
points that could lead to a state change and catalogs the energy
differences to be used in a kMC simulation. This simulation re-
quires a significant amount of computation power for large sys-
tems containing several state changes per step. The TAD adds a
boost to the energy just as HD does but through raising the tem-
perature of the system. Raising the temperature introduces unbal-
anced energy changes for the different mechanisms in the system.
These unbalanced energy changes eventually lead to incorrect rate
of state changes between mechanisms. The HD method and TST
method have also been combined to boost only the energy wells
for known mechanisms �84�. Several other methods exist follow-
ing similar lines to those discussed here �111–114�.

3.3 Current State of Molecular Dynamic Simulations of
Polymers. Much work has been done at the atomistic level to
ensure that the current methods do indeed effectively capture the
correct polymer response under glassy high strain rate conditions.
Most of this modeling has focused on united atom methods for
polyethylenes, since they have the simplest chemical structure of
all polymers. With a carbon backbone that has two hydrogen at-
oms bonded to each carbon atom, initial structures are generated
with little difficulty. Polycarbonate is another popular material
because of its many practical uses but requires a somewhat more
sophisticated bead-spring model. It is impossible to report on all
of the studies that use MD to examine the atomistic deformation
mechanisms of linear glassy polymers so here just a few studies
will be reviewed.
We begin by looking at polymer melts and equilibrium configu-
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ations. Polymer melts were modeled using amorphous cell simu-
ations for polypropylene �70,71,82� and polycarbonates �115�.
hese models do not contain any thermal fluctuations and are

imited to static properties. Many simulations performed restrict
he motion of polymer chains to a defined lattice �94,116–120�.
hese methods and others could not correctly capture neutron
cattering data or diffusion Vogel–Fulcher �121� behavior. The-
dorou and Suter �82� examined the relaxed configuration of
morphous glassy polymers. They showed that atomistic models
ffectively reproduced the cohesive energy and Hildebrand solu-
ility parameter �82� from experiments. They were also able to
how that long range order did not develop in the amorphous
tructure.

Kremer and Gresest �122–124� modeled the consequence of
ntanglements using MD of linear polymer melts. They showed
hat at a critical length of chains entanglements became present
ut below that point chains were not long enough to become con-
trained. These simulations also showed that the Rouse model
117� described the response of short chains well, but for longer
hains the reptation model �117� was relevant. Brown and Clark
72� also examined amorphous glassy polymers but focused on
he effect of temperature on the stress-strain behavior. They were
ble to predict the glass transition temperature, Tg. Brown and
lark’s simulations showed that below Tg the polymer initially
eformed elastically with a clear yield point followed by plastic
ow. Above Tg the simulations showed a viscoelastic behavior.
rown and Clark �72� also made it very clear that atomistic simu-

ations do not always result in the correct polymer response for a
iven property, especially at low temperatures �T�Tg�, primarily
ue to MD time scales, but qualitative comparisons are possible
72�. One property of polyethylene that is very difficult to model
n atomistic is the presence of a crystalline structure, which can
reatly affect the polymer’s mechanical response. Kavassalis and
undararajan �125� were able to show that crystalline phases can
e created from single PE chains due to an energetic collapse of
he chain. The crystalline structures are lamellar in nature and the
ormation is driven by the long range interaction forces between
hain segments. Another aspect of polymers that should be con-
idered beyond crystallinity is the presence of chemical cross-
inks. One example for developing cross-links is described by
uering et al. �73� in which cross-linking sites are added to

hains. When two cross-links are within a given distance, they are
hemically linked and the chains are effectively constrained. By
ntroducing cross-links, MD models are getting closer and closer
o the actual polymer atomic structure. Further advances to the

D modeling included the introduction of a different interaction
ype for terminating methyl groups of PE chains �76�. To this
oint, there is no distinction between the potentials used to de-
cribe internal and chain terminating united atoms or beads. Since
he chain ends are very important for chain migration and repta-
ion due to the presence of free volume at chain ends, the ends
hould have a potential that captures the difference.

Bergström and Boyce �126� modeled a polymer network and
racked the orientation of chains to determine which energy com-
onents, bond, angle, torsion, or nonbonded, dominated the defor-
ation. They showed that bond lengths and angles changed little

hroughout the deformation. The energies associated with the di-
edral angle and nonbonded interactions dominated the mechani-
al response of the material. These simulations further showed
hat chains tended to align in the direction of loading with local
rdering. Along with determining the critical energy components
or the deformation, Bergström and Boyce �126� compared the
lastic results from the MD to a network of eight chains that are
ligned along the diagonals of a unit cell. Making this connection
etween bulk MD and an eight-chain model is an important step
n linking length scales using models that are not as computation-
lly intensive as MD simulations. Capaldi et al. �127� also per-
ormed several simulations showing that united atom methods can

ffectively capture the qualitative stress-strain response of poly-
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mer glasses of PE type. They further showed that changes in the
torsional conformation are the key deformation mechanism prior
to yield. Expanding upon the idea of chain alignment, Lavine et
al. �74� used stretching as a method to produce a semicrystalline
structure. Upon unloading of PE, the simulations show that crys-
talline structures are stable. The formation of crystalline regions is
enhanced by pre-orienting the chains. Yashiro et al. �128� showed
chain alignment for polymers under tension and examined the
entanglement structure of the chain network. Entanglements will
be an important aspect of the multiscale modeling focus. En-
tanglements and their density determine the critical elastic chain
segment length. It is clear from the above studies that MD is a
vital tool in determining many of the deformation mechanisms at
the atomistic level that control macroscale response.

3.4 Impact of MD on Multiscale Models. For the MD simu-
lation results to have an impact on the next higher length scale,
the bridge between the two scales must be clear. For example,
Valavala et al. �129,130� effectively developed a continuum level
hyperelastic model that incorporates the results of molecular dy-
namics simulations. The models by Valavala et al. �129,130� es-
tablish the upper and lower bounds for the elastic properties of
polycarbonate-type polymers and validate that the elastic response
of several microstates fall between these limits. The elastic re-
sponses are then inputted into the continuum models. These spe-
cific methods are limited to glassy polymers in the elastic regime
but the ideas show that links between MD and coarse-graining are
effective methods for finding microscale properties that can be
implanted into continuum models.

Similar research to that of Valavala et al. �129,130� focused on
the plastic deformation of materials at the atomistic level. Sheno-
gin and Ozisik �131� performed MD simulations to study local
plastic shear transformations �PSTs�, which are the primary
mechanisms for plastic deformation in glassy polymers. In this
case atomistic simulations were performed to determine the size
and shape of PSTs, which are then passed to a continuum type
model. Other aspects of the polymer that could prove to be useful
at higher length scales included the finding that localized shear
occurred around atoms that have a high mobility but not neces-
sarily a low density. While these structure-property methods show
that it is possible to pass information directly from atomistics to
the continuum, not all information can be captured by MD. Due to
the limited amount of time that a MD simulation can model, not
all deformation mechanisms are in operation, namely, reptation
and chain migration. Reptation and chain sliding are believed to
control the viscoelastic/plastic properties of the material. Further-
more, care must be taken when correlating the results from MD to
higher length scales, in particular, when defining a representative
volume element �RVE� for the system. Many of the properties
found using MD simulations are dependent on the simulation size,
which ultimately defines the RVE of the model �130�.

4 Macroscale Methods
This section reviews different material models formulated at the

macroscale using continuum mechanics principles, giving particu-
lar emphasis to models for amorphous polymers. The presentation
proceeds by describing the large deformation kinematics and ther-
modynamics framework used to formulate the constitutive equa-
tions in the context of the finite element method �FEM�, which
allows for numerical simulations. Section 4.4 comprises a litera-
ture review of different material models used to describe the me-
chanical behavior of amorphous polymers and a discussion on the
ability of numerical models based on internal state variables to
bridge various length scales together.

4.1 The Continuum Mechanics Approach. At the micro-
scopic level, polymers are viewed as a discontinuous atomic struc-
ture characterized by molecules and large gaps between them.
Theories such as quantum, molecular, and atomistic theories �de-

scribed above� consider a discrete structure of matter. At the mac-
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oscopic scale, such theories are too computationally expensive
or use in solving engineering boundary value problems. How-
ver, the research concerning polymeric materials is constantly
rowing driven by new engineering applications. Therefore, the
evelopment of multiscale modeling based on the bridging of the
icromechanisms from lower to higher length scales is indispens-

ble for predicting with accuracy the mechanical behavior of ma-
erial under complex loading.

4.1.1 Kinematics. Polymeric materials are characterized by
heir mechanical properties during large deformations, which in-
lude large stretching and/or rotations. As such, large deformation
inematics needs a consistent formulation to follow the material
eformation in space and time.

Macroscopic systems can be generally described successfully
sing a continuum theory. Continuum theories are based on the
undamental assumption that a body, denoted by B0, can be de-
ned by a continuous distribution of matter in space and time. The
ody is viewed as being a composition of continuum particles or
aterial points, in which the material points represent a set of a

arge number of molecules.
In standard continuum mechanics form, we let X represent an

rbitrary material point in B0 �essentially, a body is identified
ithin a space with a fixed reference configuration�. The motion
f B is described through the mapping x=y�X , t� via a deformation
radient �F�, velocity �v�, and velocity gradient �l� by the follow-
ng:

F = �y, v = ẏ, l = grad v = ḞF−1 �17�
An essential kinematical ingredient of elastoviscoplastic consti-

utive models for amorphous glassy polymers is the classical
röner �132� and Lee �133� multiplicative decomposition of the
eformation gradient F into elastic and plastic �inelastic� compo-
ents,

F = FeFp, J = det F = JeJp, Je = det Fe, Jp = det Fp �18�
As described by Anand and Gurtin �134� for polymeric materi-

ls, Fe represents the elastic part due to “elastic mechanisms,”
uch as stretching and rotation of the intermolecular structure in
olymeric material. Fp represents the plastic part due to “plastic
echanisms,” such as permanent stretching and rotation due to

he relative slippage of molecular chains in polymers. The decom-
osition �18� suggests that there exists an intermediate configura-
ion between the underformed B0 and the current B configuration,

hich is denoted here by B̄. Hypothetically, B̄ is obtained from B
y unloading through Fe−1 to a zero stress state �a relaxed
onfiguration�.

Using Eqs. �17� and �18�, the velocity gradient l can be written
s

l = le + FeLpFe−1 �19�

ith

le = ḞeFe−1, Lp = ḞpFp−1 �20�
e and Lp can be decomposed into their symmetric and skew parts,
.e., le=de+we and Lp=Dp+Wp. Two main assumptions can be

ade concerning the plastic flow: �i� the flow is incompressible,
nducing det Fp=1 and tr Lp=0, and �ii� the flow is irrotational,
nducing Wp=0 �135,136� and then Lp=Dp. This last assumption
as been mainly used to simplify the equations and is not based on
xperimental observations or molecular simulations.

The Cauchy stress �137� can be written as

� = J−1� = J−1FSFT �21�

here � is the Kirchhoff stress �137�, and S is the corresponding
econd Piola–Kirchhoff stress �137� expressed in configuration

0.
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4.1.2 Balance Principles of Continuum Mechanics. The bal-
ance laws of continuum mechanics are essential to set the equa-
tions required to solve an initial boundary value of a thermome-
chanical problem. In this section, we briefly recall the
fundamental balance principles of continuum mechanics, i.e., the
conservation of mass, the momentum balance principles, balance
of energy, and entropy inequality principle �see Ref. �137� for a
detailed review�. They are applicable to any material and must be
satisfied at any time.

The balance of mass states that the total mass of a closed sys-
tem remains constant, i.e.,

�̇ + � div�v� = 0 �22�

where � is the spatial mass density. The balance of linear momen-
tum states that the time rate of linear momentum of a volume is
equal to the sum of the force acting on the body and allows the
deduction in Cauchy’s first equation of motion, i.e.,

div � + b = �v̇ �23�
The balance of angular momentum states that the time deriva-

tive of the moment of linear momentum is required to be equal to
the sum of the moments of the forces acting on the body acting on
the same point. The balance of angular momentum results in the
symmetry of the Cauchy stress tensor �, i.e.,

� = �T �24�
The balance of energy �first law of thermodynamics� states that

the rate of work performed on the continuum body, defined by the
sum of the rate of internal work Pint�t� and the rate of thermal
work Q�t� is equal to the rate of internal energy ��t�. The first law
of thermodynamics written in configuration B is given by

Pint�t� + Q�t� =
D

Dt
��t� �25�

with

Pint�t� =�
B

�:ldv, Q�t� =�
B

�− � · q + rv�dv, ��t� =�
B

evdv

�26�

where ev, q, and rv are, respectively, the specific internal energy
�per unit volume�, the heat flux per unit area, and the heat source
per unit volume expressed in the configuration B.

The first law of thermodynamics governs the energy transfer in
the thermodynamic system but gives no statement on the direction
of the energy transfer like the second law of thermodynamic,
which dictates the direction of energy transfer. The second law of
thermodynamics introduces the concept of entropy. The entropy
can be viewed as a measure of microscopic randomness and dis-
order �138�. The second law of thermodynamics states that the
total production of entropy per unit time is always positive. The
entropy inequality principle can also be written in the form com-
monly referred to as the Clausius–Duhem inequality �137�,

̇v −
rv

�
+

1

�
� · q −

1

�2q · �� � 0 �27�

where v is the specific internal entropy �per unit volume�, and �
is the absolute temperature. The Helmholtz free energy is intro-
duced through the Legendre transformation,

�v = ev − �v �28�
By substituting Eq. �25� into the Clausius–Duhem inequality

�Eq. �27��, and using Eqs. �26� and �28� lead to the equation
formulated in terms of Helmholtz free energy:

�:l − �̇ − �̇ −
1

q · �� � 0 �29�

�
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4.1.3 Constitutive Relations. The study of inelastic materials
uch as polymeric materials gave rise to the development of new
onstitutive models based on internal state variables. In contrast to
ariables F, C �Cauchy–Green tensor�, or �, which are external
bservable variables, internal variables also known as hidden vari-
bles represent microstructure, defects, grains, and items embed-
ed within the material. A general framework based on a thermo-
ynamic approach with internal state variables has been
eveloped and used to predict the mechanical properties of metals
nd polymers �139–143�.

Assuming that the Helmholtz free energy is dependent on ob-
ervable variable C and a set of additional internal variables �	,
=1 , . . . ,n, we can write the following:

� = ��C,�1,�2, . . . ,�n� �30�

here �i are the internal state variables. Equation �29� serves as a
ajor mathematical restriction on the constitutive equations gov-

rning the evolution of internal variables and heat conduction.
ntroducing Eq. �30� in Eq. �29� and using the classical arguments
139�, the different equations of state are obtained for the Cauchy
tress and the thermodynamic forces A	 associated with the inter-
al variables �	,

� = J−1F�2
��

�C
FT, A� =

��

���

�31�

4.2 FEM. The continuum mechanics theory, described in Sec.
.1, is mainly based on differential equations describing the evo-
ution of the material behavior in space and time. An engineering
ool has been developed to employ these equations in the context
f complex boundary conditions. This tool is called the FEM,
hich is a general numerical method for finding approximate so-

utions of partial differential equations. Material constitutive equa-
ions need to be implemented in finite element codes to be used in
tructural computations. FEM uses spatially discretized domains,
hich allows capturing complex geometries and spatial disconti-
uities. It also allows incorporating nonlinear constitutive equa-
ions to take account of the complex mechanical properties of

aterials. The global system of equations, taking into account the
oundary conditions, is then solved to calculate the state vari-
bles. Details can be found in books especially devoted to FEM
144–146�. FEM has been incorporated in some commercial soft-
are packages and open source codes �e.g., ANSYS, LS-DYNA,
BAQUS, and ZEBULON to name a few� and is widely used in

ndustry as a tool to predict the mechanical properties of poly-

Fig. 3 Mechanical response of PC under compre
ture „RT… and „b… for different temperatures at an
ers.
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4.3 Constitutive Models for Amorphous Polymers. Poly-
meric materials are used in an increasing number of products
ranging from simple consumer goods to advanced aerospace
structures. The research concerning polymeric materials is con-
stantly growing because of the demands for lighter and impact
resistance materials. Components made in amorphous polymers
are used in automotive applications for their compatibilities with
aggressive automotive fluids, their exceptional strength at high
temperatures, and their excellent resistance to creep, wear, and
chemicals including organic solvents. Polymers exhibit a rich va-
riety of material behavior, due to their particular microstructure
�long molecular chains�. Also, their macroscopic material behav-
ior is strongly temperature, pressure, and time dependent. A num-
ber of constitutive models have been developed and implemented
in FEM codes in an effort to solve complex engineering problems
with polymers. However, the improvement of constitutive models
capturing the complicated mechanical properties of polymers is
always challenging and has importance for the design of structural
components. This section is focused on an overview of constitu-
tive models developed for polymers with a particular emphasis on
amorphous glassy polymer models.

In Fig. 3, the mechanical response of PC under compression for
different strain rates and temperatures is depicted. As noted from
Fig. 3�a�, all the curves show the expected features of the me-
chanical response for amorphous glassy polymers at temperatures
below the glass transition temperature: an initial linear elastic re-
sponse followed by a nonlinear transition curve to global yield,
and then strain softening followed by strain hardening. The stress
response also exhibits an increased yield peak value with increas-
ing applied strain rate. The effect of temperature on the mechani-
cal behavior is presented Fig. 3�b�. As displayed by Fig. 3�b�, the
yield stress, the initial Young modulus, and the hardening de-
creased as the temperature increased. We can also note that for
temperatures above Tg �reported as about 150°C for PC in the
literature�, the material is in a rubbery regime.

In the literature, several theoretical models have been estab-
lished to evaluate the complex nature of glassy polymers with the
main purpose of capturing their mechanical behavior. These con-
tinuum models can be grouped into two major categories: phe-
nomenological and physically based models.

The phenomenological models attempt to describe the mechani-
cal response of the material with few considerations of the internal
structure. Models, initially developed for metals, were used to
reproduce the mechanical properties of polymers. For instance,

on: „a… for different strain rates at room tempera-
plied strain rate of 0.01/s.
ssi
Van der Sluis et al. �147� predicted the nonlinear behavior of
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olycarbonate by using the viscoplastic overstress model of
erzyna �148�. In the same way, a viscoplasticity theory based on
verstress �VBO� developed by Krempl �149,150� was used to
escribe the behavior of highly crystalline polymers such as
olyamide 66 or high-density polyethylene �151–153�, character-

zed by a mechanical behavior close from those of metals. A sec-
nd class of phenomenological models based on differential equa-
ions and combining linear and nonlinear springs with dashpots
as been largely used to predict the viscoelastic response of poly-
ers �154–158�. A different approach based on non-Newtonian
uid mechanics �159� was proposed by Tervoort et al. �160� to
escribe the nonlinear viscoelastic behavior of glassy polymers.
his model was refined to account for the softening and hardening
ffects on the mechanical response �161,162�. This review is not
xhaustive as other phenomenological constitutive models for
lassy polymers have been developed in the literature
158,163–165�. Even though these phenomenological models
howed their capability to reproduce the inelastic behavior of
olymers for a range of specific loading, many important struc-
ural and mechanical features were not included; hence, the mod-
ling of history effects is typically lacking. As discussed by Anand
nd Ames �166�, these models developed to predict macroscopic
esting results will generally fail in the prediction of microme-
hanical testing like indentation tests. Moreover, this deficiency of
ot including microstructural features makes the usage of these
odels difficult in a multiscale modeling strategy.
The purpose of the physically based models is to capture the

etailed mechanical responses by including the internal micro-
tructure of the material. Haward and Thackray �167� pioneered
he material modeling of glassy polymers by the use of yield/flow

odel �based on Eyring theory �168�� combined with rubbery
yperelastic model �three-chain model of James and Guth �169��.
his idea was extended by Boyce et al. �170� to a three-
imensional model using the theory of Argon �171� to model the
ow stress and the three-chain model �169� to take account of the
tress hardening behavior at large strains.

Regarding the flow stress, three main theories can be found in
he literature. The first model used to describe the rate-dependent
lastic flow was developed by Eyring �168�. Eyring’s theory based
n “transition state” theory considers the idea that one molecule
ransitioned from a particular state or potential energy to another
y overcoming an energy barrier. Another widely accepted theory
as developed by Robertson �172�. In the Robertson model, the
lasticity was attributed to a thermally activated transition of mo-
ecular structural states from flexed to extended configurations by
otation of chain segments. Argon �171� presented an alternate
heory �molecular double-kink theory� based on a thermally acti-
ated molecular motion where the resistance to the plastic flow
as attributed to intermolecular forces due to the alignment of
reviously kinked chains in the direction of the straining. All three
heories proved their ability to predict the rate and temperature
ependent yield stress of various amorphous polymers. However,
hey are unable to capture the yield stress evolution at low tem-
erature and moderate to high rates of deformation. Later, Ree and
yring �173,174� advanced a theory based on multiple rate-
ctivated processes, and Fotheringham and Cherry �175,176� de-
eloped a theory based on complex “cooperative” activation pro-
ess. In both cases, they have shown their abilities to capture the
ield stress behavior across a wide range of temperatures and/or
train rates.

Regarding the stress hardening in the amorphous glassy poly-
ers, all of the proposed models fall into one of the two schools

f thought: the continuum approach �177–180� and the statistical
pproach. Regarding the statistical approach, we can mention the
hree-chain model from James and Guth �169�, the eight-chain

odel from Arruda and Boyce �181�, and the works of Wu and
an der Giessen �182�, Elias-Zuniga and Beatty �183�, and Miehe

t al. �184�. From a multiscale point of view, the statistical ap-
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proach is more appropriate to capture the microstructural evolu-
tion. This approach derives stress-strain properties from an ideal-
ized model of its molecular structure.

More degrees of freedom can be added to the continuum mod-
els �166,185,186� to account for micromechanisms in order to
capture the mechanical properties of polymers through a range of
temperatures �below and above the glass transition temperature�
and strain rates �from low to high strain rates�. For instance, Mul-
liken and Boyce �185� proposed a micromechanical model for the
amorphous polycarbonate based on the 	- and �-mechanisms rep-
resenting the rotation of main-chain segments and phenyl group in
order to describe the yield strength of the material. The use of MD
simulations opened an avenue to provide understanding of the
various micromechanism evolutions and their associated connect-
edness to the macroscale mechanical response. Thus, Capaldi et
al. �127� showed the connection between the free volume evolu-
tion and the macroscale softening. This dependence has been used
in continuum models to improve the mechanical response of
amorphous glassy polymers �136,187,188�. As discussed in more
detail in Sec. 4.4, Shepherd et al. �83,84� developed an interesting
ISV model based on a hierarchical multiscale strategy able to
predict the evolution of polymer morphology such as entangle-
ment and crystallization and reproduce the mechanical behavior of
semicrystalline polymers over a range of temperatures and strain
rates. Although most of these models capture accurately the me-
chanical properties of polymers for simple loading cases, they
typically cannot capture the mechanical response when submitted
to complex cyclic loading cases. These results show that some
important micromechanisms are not yet completely understood
and described in the polymeric models. Efforts need to be done to
continue building the bridging between the different length scales.

4.4 Multiscale Strategy Using Internal State Variables
Formulation. ISV is a constitutive modeling theory that can ad-
mit physical microstructural features. A discussion on the use of
internal state variables models coupled with hierarchical multi-
scale modeling as a challenging solution is presented in this sec-
tion. ISV �see Ref. �189�� constitutive models are based on the use
of thermodynamical constraints and can be physically based on
microstructure-property relations. ISVs are differential variables
and are functions of observable variables such as temperature,
strain rate, and stress state. The ISV method is an effective
method of hierarchical modeling in which numerical methods are
independently run at various length scales and then a bridging
methodology is adopted. It is a top-down approach, meaning the
ISVs exist at the macroscale but reach down to various subscales
to receive pertinent information. ISV applications have been ex-
tensively studied in solid mechanics, but ISV theory has probably
had its greatest impact on metals. Recently, microstructure-
property relations have been included in ISVs to capture history
effects of cast aluminum and wrought aluminum �3,190–192�. The
hierarchical multiscale methodology has been employed for
monotonic and fatigue loads �193,194�. Examples of multiscale
hierarchical methods have been demonstrated by Horstemeyer and
co-workers �195–197�. For these examples, experiments were
used to validate the modeling at a particular scale, and then the
pertinent effects, not all of the causes, were brought up into the
macroscale level. In the multiscale work of Horstemeyer and co-
workers �195–197�, ISVs were used as a top-down approach to
bring into the macroscale the pertinent nanoscale, microscale, and
mesoscale phenomena.

Although metals have enjoyed a rich history of ISV usage, the
application to polymers has not been as prevalent. The complexi-
ties of polymers are different than metals, but the methodology of
embedding mechanisms into the ISV framework that are con-
strained by thermodynamics is the same. Arruda et al. �181� de-
veloped an ISV formulation for evolving anisotropic viscoelastic
polymers based on the previous viscoplastic formulations. During
processing glassy polymers produce highly anisotropic polymer

components as a result of the massive reorientation of molecular
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hains during the large strain deformations. Using material prop-
rties from initially isotropic material, simulations were shown to
apture the important aspects of the large strain anisotropic re-
ponse including flow strengths, strain hardening characteristics,
ross-sectional deformation patterns, and limiting extensibilities.
ater, others developed ISV theories for polymers. Schapery �198�
eveloped an ISV formalism for nonequilibrium thermodynamics,
train rate sensitive, viscoelastic fracture mechanics that ac-
ounted for effects of viscoelasticity, viscoplasticity, growing
amage, and aging. Within this research effort, Schapery �198�
nalyzed the isotropic and anisotropic aspects of the ISV formal-
sm. Yoon and Allen �199� introduced a cohesive fracture model
nto an ISV formulation for nonlinear viscoelasticity materials.
lso, Wei and Chen �200� proposed an ISV model that extended

he network theory of rubber elasticity with viscosity. Ghorbel
201� also proposed a viscoplastic ISV formulation to predict the
echanical behavior of polymer by changing the yield function

apturing the plastic flow to include the first three invariants of
tress and therefore take into account the pressure dependence and
trong deviatoric interactions. Finally, Anand et al. �202� and
mes et al. �203� recently developed a thermomechanical model

or amorphous polymers based on internal state variables repre-
enting the important aspect of the microstructure resistance to
lastic flow. This model predicted the mechanical behavior of
morphous polymers for various types of testing �compression,
eversed torsion, isothermal forging, and impact test�.

However, most of these models assume phenomenological evo-
ution equations for their internal state variables and thus do not
onsider a hierarchical multiscale strategy. A review of hierarchi-
al multiscale modeling in polymers can be found in Refs.
100,204,205�. These papers discussed new methods and algo-
ithms that can be used for predicting thermal, mechanical, and
heological properties of polymers. Shepherd et al. �83,84� devel-
ped an interesting multiscale modeling strategy for semicrystal-
ine polymers tracking the evolution of entanglement density
hrough MD simulations during thermomechanical deformations
nd then passing the evolution equations from nanoscale struc-
ures to an ISV model. They showed that an ISV material model
hat takes into account the atomistic structure behavior of the ma-
erial accurately reproduces over a range of strain rates and tem-
eratures the mechanical behavior and the evolution of crystanil-
ity and orientation of semicrystalline polymers. Their work
mphasizes the impact that could have the development of multi-
cale modeling in the way to synthesize and optimize polymer
orphology for specific applications,
Regarding amorphous polymers, we know that free volume,

ntramolecular �chains rotation� and intermolecular �Van der
aals forces� resistances, entanglement number density, crystalli-

ation, and crystal number density drive the mechanical features
f polymer at the macroscale. Questions to consider in modeling
his class of polymers are the following: Are these mechanisms
ime, temperature, or stress state dependent? Can they be quanti-
ed? What are the damage mechanisms and their associated evo-

ution rates from nanoscale or microscale? With the evolution of
omputer simulations, are we now able to model a realistic micro-
tructure of an amorphous polymer? The answer is probably “no.”
ut we are now able to model idealized microstructures of poly-
ers and track the main micromechanisms �such as entanglements

nd free volume evolution� through different length scales. Efforts
eed to focus on the understanding of the nonlinear mechanical
ehavior of polymers to resolve path history dependence in order
o solve complex engineering boundary value problems.

Summary
The development of new material systems that are safe, ul-

ralightweight, cost-effective, and manufacturable is at the fore-
ront of designing industrial components. The potential for poly-
er based structural components is now becoming realized, but
hallenges still exist. The challenges of creating an effective com-

ournal of Engineering Materials and Technology
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ponent often require a rigorous description of material behavior
from the nano- to macroscale. Having a predictive physics-based
model is one key method of facing these challenges. In addition,
testing in terms of model exploration, model calibration, and
model validation needs to be continued with an eye for structure-
property quantification.

In this paper, we reviewed hierarchical multiscale methods fo-
cusing on the mechanical behavior of amorphous polymers. Dif-
ferent methods can be used for this purpose: QM, MD, and CM.
QM uses different methods including DFT to capture interatomic
and conformation energies �47–59�. QM predicts energies quite
well for systems on the order of a few hundred atoms. For larger
systems of atoms, the computational time becomes unreasonable
resulting in the need for other modeling techniques. The informa-
tion calculated from QM assists in the development of potentials
for larger MD and bead-spring �coarse-grained� simulations
�59–65�. MD and bead-spring methods model molecules and
chains on the order of millions of atoms for a few nanoseconds.
MD simulations capture elastic and viscous properties of the ma-
terial and determine the deformation mechanisms controlling the
motion �74,82–84,126–128�. Since there are significant differ-
ences in time between the many deformation mechanisms includ-
ing conformation changes and reptation, the time scale of MD is
not always sufficient. Time scales can be increased by orders of
magnitude using MC �96,106� and hyperdynamics �107,108�, but
the lengths are still limited to millions of atoms. One goal of the
MD simulations is to develop evolution equations and energetic
relations for each mechanism to be passed to CM simulations
�83,84�. This link still requires a significant amount of research to
move away from phenomenological evolution equations. CM
simulations remove the atomistic details of the problem and are
used to solve the largest size problems. Generally the evolution
equations used in continuum models are phenomenological and
lack physical meaning �166�. For a rigorous and complete multi-
scale strategy, the nanoscale properties of importance should be
present at all length and time scales. Multiscale modeling has had
a great impact on metals �ordered structure� relative to amorphous
polymers, but the work done on metals can only be a guide for the
work in expanding the multiscale modeling of polymers
�83,84,100,204,205� as the mechanisms related to the time and
length scales are different.

The primary challenge of a multiscale model for polymers is
the development of a hierarchical physically validated and nu-
merically verified suite of multiscale theoretical/computational
models for materials. These models should provide a fundamental
understanding to direct and control matter starting at the quantum
level to achieve novel physical and thermomechanical properties.
With increasing computational power and the associated software
tools, the ability to quantify the structure-property relations of
polymers at different length scales is still far from being achieved.
Yet, the current works reviewed here show that many are facing
the challenges created by this vast problem. A functional hierar-
chical multiscale model would be an efficient and effective design
tool for structural components that will ultimately save industry
time and money while increasing efficiency and safety for con-
sumers.
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