
Improving the Effectiveness of
Microcontroller Education

Robert B. Reese and Bryan A. Jones
Department of Electrical and Computer Engineering

Mississippi State University
Starkville, MS USA

{reese, bjones}@ece.msstate.edu

Abstract—The increased power and functionality of modern
microcontrollers provides both an opportunity and a challenge
to educators. Increased complexity, the necessity of integrating a
hands-on lab experience, and downward pressure on total curri-
culum hours demand a significant investment of time to mod-
ernize microcontroller education, which few educators can af-
ford. However, a successful microcontrollers course provides a
unique opportunity to equip students to produce large, complex
systems in their capstone design course. This paper details the
evolution of an approach which provides an integrated course
and laboratory experience for students. Results of these changes
produced quantitative differences in the resulting capstone de-
sign courses, validating the approach.

I. INTRODUCTION
In modern embedded digital systems, a microcontroller is

as fundamental a component as transistors and individual logic
gates were 30 years ago. It is difficult to envision any type of
digital system other than the most simple that does not incor-
porate a microcontroller (or multiple microcontrollers).
Shrinking transistor geometries have allowed microcontrollers
to incorporate tens of subsystems around the CPU core, mak-
ing modern microcontrollers extremely flexible in their capa-
bilities. It was thought in the 90s that Field Programmable
Gate Arrays (FPGAs) would eventually eclipse microcontrol-
lers as the platform of choice for digital system implementa-
tion, but this has not happened because of the increasing
speed, increasing flexibility, lower power consumption, faster
prototyping, wider application range, and cheaper cost of a
microcontroller solution. However, the increasing complexity
of these devices leads to challenges for the instructor.

Effective teaching of microcontroller programming and
hardware interfacing is challenging within EE and CPE pro-
grams for several reasons. First, a modern microcontroller is a
complex system, with datasheet, programming reference, and
family reference materials totaling over one thousand pages.
Becoming familiar with a microcontroller family at the detail
necessary for course integration is a time-consuming task for
an educator. Second, microcontroller education still requires a
significant hands-on laboratory experience despite advances in
system simulation. Developing this laboratory experience re-
quires an even greater time investment by the educator. Final-
ly, downward pressures on total curriculum hours has forced
educators to think of creative ways to combine traditional two-
course sequences such as computer organization/assembly

language programming, followed by a microcontrol-
ler/hardware interfacing course, into a single course.

II. BACKGROUND
These barriers hamper many educators in their efforts to

improve the effectiveness of microcontroller education. Table
I shows a sampling of microcontroller content at institutions
that competed in the SECON 2008 student hardware competi-
tion. The schools listed are those had detailed course informa-
tion accessible from the web; general catalog information was
not used. In general, only the EE requirements were checked,
since almost all programs had the microcontroller course re-
quired of computer engineering majors.

As detailed in the course sampling of Table I, 67% of the
surveyed schools employ assembly language in their curricu-
lum, hampering student understanding of the nuances of
hardware subsystems. For example, simple statements in C
such as “if (i8_a < i32_b)” mask important architectural fea-
tures such as sign extension, varying data with (8 vs. 32 bits),
signed vs. unsigned comparison, conditional branches, and
register allocation and assignment. Only 56% require micro-
controller interfacing, limiting student ability to design com-
plex systems in a capstone design course. As a result, students
find the intelligence of their designs constrained to a handful
of comparators, as shown in Figure 3. In contrast, Figure 1
illustrates the design complexity students achieve based on a
firm grasp on the theory and application of microcontrollers;

Figure 1. Photo of completed project, capstone course, Spring 2008.

978-1-4244-5855-4/10/$26.00 ©2010 IEEE 172

In addition, 78% of the schools employ Freescale processors
which provide a very limited selection of DIP-packaged ICs,
further complicating capstone design efforts.

The strong emphasis on an assembly-only approach, taken
by 67% (12/18) of the schools, follows the standard approach
taken by textbooks written in the 90s and early in this decade
[1, 2]. The reason for this was that on-chip program space and
data RAM was limited, so microcontroller programs had to be
highly optimized. Also C compiler choices for microcontrol-
lers were limited. However, modern microcontrollers now
have large amounts of program memory, with even lower-end
8-bit microcontrollers commonly having 16 Kbytes of flash
memory or more, and data RAM in low multiples of Kbytes.

Only 56% of the sampled institutions (10/18) require mi-
crocontroller interfacing for EE majors; the rest have it as a
either a Junior or Senior elective. All of the curriculums that
have it as an elective have a computer organization course as a
prerequisite. Therefore, many students find themselves poorly
prepared to execute complex designs for their capstone design
course.

Freescale (formerly Motorola) processors are used in most
of the embedded courses (14/18, or 78%), due to Motorola’s
domination of the embedded market in the late 80s and 90s.
Many good assembly language textbooks were written for
Freescale processors during that time frame, so they were a
natural choice for embedded courses. A good university pro-
gram by Freescale and inertia in the academic environment
has enabled them to maintain that presence. The predominance
of assembly language programming for Freescale processors
is historical because C compilers for Freescale were initially
only offered by third parties, with spotty support for student
editions. This has changed in this decade, with the CodeWar-
rior suite now offered in student editions that have a limit on
maximum program size and number of files. Support of DIP
packages for prototyping on Freescale's various families re-
mains poor.

From the data in Table I, it would appear that the approach
proposed in this paper could be of value to educators who are
currently using their microcontroller course for teaching as-
sembly language programming, and for those who are also
using assembly language for the hardware interfacing portion
of the course. This paper outlines a method more fully covered
in [3] which maintains an exposure to assembly programming
for their students, but uses the C language for the hardware
interfacing topics. References [4-5] provide additional exam-
ples of microcontroller texts published after 2000 whose prin-
cipal programming language is C.

A. Trends in Microcontroller Development and its
Educational Impact
Modern microcontrollers feature tens of subsystems clus-

tered around a CPU core. A list of the subsystems for a
PIC24HJ128GP502, which is available in a 28-pin DIP, are:

• 128 KiBytes of non-volatile program memory, 8 Ki-
Bytes of SRAM

• Five 16-bit timers

• Four PWM and output compare channels

• Two UARTs (asynchronous serial communication)

• Two Serial Peripheral Interface (SPI) ports (synchron-
ous communication)

• One Controller Area Network (CAN) port (synchron-
ous communication, used in automotive industry)

• One Inter-Integrated Circuit (I2C) port (synchronous
communication)

• One Cyclic Redundancy Check (CRC) generator

• One 10-bit/12-bit ADC with multiple channels and
DMA

• One real-time clock module

TABLE I. A SAMPLING OF MICROCONTROLLER REQUIREMENTS AT VARIOUS INSTITUTIONS

Institution Course Processor
University of Alabama (Tuscaloosa) ECE 383 Microcomputers Freescale MC9S12DP256B, C
University of Kentucky EE 383 Embedded Sys. Freescale 68HC12, asm
Auburn ELEC 2220 Computer Sys. Freescale 68HC12, asm
Univ. of Tennessee (Knoxville) ECE 355 Computer Sys. Fund.

ECE 455 Embedded Progr.
PowerPC family, asm + C,
TI MSP 430, C

University of South Carolina (EE Dept) CSCE 212 Intro. to Comp. Arch.
CSCE 313 Embedded Sys. Lab

asm, no lab
Freescale 68000

University of South Alabama EE 264 Microprocessors and Interfacing Freescale 68HC11, asm
Tennessee Tech. Univ. ECE 3120 Microcomputer Sys\. Freescale HCS12, asm + C
Embry-Riddle Aeronautical University CEC 320 Microprocessor Sys. Freescale 68000, asm
University of Louisville ECE 412 Freescale 68HC11, asm
The Citadel ELEC 330 Digital Sys. Eng. Freescale 68HC11, asm
University of Central Florida EEL 4767C Computer Sys. Design Freescale MC68HC11, asm
Old Dominion University ECE 446 Microcontrollers Freescale MC68HC11, asm
Clemson ECE 371 Microcomputer Interfacing Freescale MC9S12DP256B, C
North Carolina State University ECE 306 Intro. to Embedded Sys. Renesas M16C/16P, C
Florida State Univ. EEL 4746 Microprocessor Based Sys. Design Freescale MC68HC11, asm
Virginia Commonwealth EGRE 364 Microcomputer Sys. Atmel ATMega, asm
Florida International EEL 4746 Microprocessor Based Sys. Design Intel 80386DX, C
University Of Florida EEL 4744C Microprocessor Applications Freescale 68HC12, asm

173

• General purpose IO

From an educational viewpoint, this single device is easily
capable of filling an entire semester's worth of hardware inter-
facing experiments; in fact, it contains more capability than
can be covered in a single semester. This classes of devices
can be considered a Super Microcontroller when compared to
the devices of the 90s.

Coupled with Super Microcontrollers has been the emer-
gence of Super Peripherals, which are peripherals with SPI or
I2C serial ports that encapsulate complex communication pro-
tocols and physical interfaces for standard communication
links such as Zigbee wireless [6], Wireless Ethernet 802.11
[7], or USB [8]. These Super Peripherals actually house an
internal microcontroller and its associated software stack to
implement the peripheral function, simplifying system design
by keeping the software complexity of these communication
links out of the main microcontroller's code space. It also
brings more parallelism to the system because the system con-
tains multiple microcontrollers, with different microcontrollers
dedicated to specific communication systems. The Super Mi-
crocontroller with multiple UART, SPI, I2C, or CAN ports
combined with Super Peripherals allow a building block ap-
proach to system design.

III. INSTRUCTIONAL APPROACH
Beginning Fall 2003, the Electrical & Computer Engineer-

ing Department at Mississippi State University shifted its in-
troductory microprocessor course from a traditional assembly
language orientation (x86-based) to one that emphasizes em-
bedded system concepts and hardware/software prototyping
skills [9]. The course is required for computer science, elec-
trical engineering, computer engineering, and software engi-
neering majors and is 4 credit hours (3 lecture, 1 lab).

Students are provided instruction in assembly language
programming, but are not expected to become experts. All
assembly language examples are given as code converted from
C language snippets. Assembly language labs are specified as
C programs, with the students acting as human compilers for
implementation. This removes the mystery of the C to assem-
bly language link, and prepares the students for the hardware
labs that are implemented entirely in C. Using C for the hard-
ware labs provides greater code clarity and allows for more
complex examples. Grasping the hardware interfacing issues
is difficult enough without adding the extra complexity of
coding applications in assembly language.

The hardware labs cover the onboard peripherals of the
target microcontroller such as the timer subsystem, I2C inter-
face, and analog-to-digital converter, as well as off-chip inter-
facing to devices such as a serial EEPROM, an I2C digital-to-
analog converter, and an H-bridge/DC motor. The hardware
labs are built from a parts kit ($65) purchased by the student,
with wiring done on a protoboard. Figure 2 shows a proto-
board with the first hardware lab connections completed.

We use the parts kit approach because if a student is
handed a development board with the processor and other
devices on a PCB, then many tend to view it as a monolithic
unit and want to use that same PCB when they need a micro-
controller for the capstone course. Building a system from a

bag of parts can be a painful but educational experience, but it
only has to be done once. After that experience, we have
found that students then understand the individual components
of a microcontroller system, which instills the required confi-
dence for building a custom PCB when they need it for the
capstone experience.

This course/lab combination has undergone several transi-
tions and modifications since Fall 2003, moving from instruc-
tion focused on an 8-bit microcontroller [10] to more recent
efforts centered on a modern 16-bit microcontroller [1].

We considered other approaches, especially the TekBots
[11] approach at Oregon State since that has the hands-on,
early microcontroller introduction that we wanted. However,
the robot platform is fairly expensive as an initial purchase,
and we were not going to integrate it across several courses as
was done at Oregon State. We needed a single course solution,
and one that was flexible. The parts kit approach allows us to
easily make changes, both in parts for individual experiments,
and also in the core processor choice. The parts kit also serves
as a starting kit when students need a microcontroller for the
capstone course. However, during the two-semester capstone
course, many teams end up choosing a different processor,
most commonly one of the same general family but with more
I/O pins or a different set of on-chip peripherals.

When first designing the course, several processor families
were examined. We finally chose Microchip because of their
traditional support of the hobbyist market with availability of
DIP packaging, C compiler support with student versions,
inexpensive in-circuit programming options, and a strong uni-
versity program. In 2007 [12], the rankings for microcontroller
sales in the US were (1) Freescale (32%), (2) Renesas (14%),
(3) Microchip (11%), (4) TI (8%), and (5) NEC (8%). World-
wide sales ranking for the same period were 1) Renesas
(21%), (2) Freescale (12%), (3) NEC (10%), (4) Infineon
(6%), and (5) Microchip (6%). These rankings are used to
show that using Microchip processors are mainstream in terms
of industrial acceptance, and have features that are valued by
that community. From a pedagogical viewpoint, the microcon-

Figure 2. Wiring required for the first hardware lab.

RP11 (TX)

GND

RP10 (RX)

Black wire is ground

C3 (10.0 µF)

PIC24HJ32GP202

C2 (0.1 µF)

R3 (10 kΩ)

USB-to-serial conn.

L1 LED

RTS#, connect to
MCLR# for bootloader

R1 (910 Ω)

Power Sw.

6 V input

MCLR# Sw.

3.3 V reg.

fuse.
GND
3.3 V

C1 (10.0 µF
or higher)

C5

GND
3.3 V

174

troller choice is not that important as long as the microcontrol-
ler is representative of the general microcontroller population.

This type of course revision of rethinking the placement
and content of microprocessor courses is hardly unique. Ref-
erence [13] describes a course change at the University of Al-
abama, Tuscaloosa that replaced an x86-approach in their in-
troductory microprocessor course with an embedded approach
using a Freescale MC9S12DP256B microcontroller. Given the
increasing capabilities of modern microcontrollers and their
ubiquitous role in digital systems, it is a natural evolution.

IV. RESULTS
Since the curriculum change, we have seen a measurable

improvement in the complexity and quality of projects in our
capstone course. Figure 3 shows photographs of two com-
pleted capstone projects created before the curriculum changes
percolated to the capstone course. The left photo, taken from a
Fall 2002 capston design project, is an electromagnetic field
detection circuit with audible buzzer ("SafetyPin") that is built
from simple discretes and ICs. The photo on the right is from a
'smart light' controller for a second semester capstone design
team advised by the PI of this proposal from Spring '01 to Fall
'01. The team was bootstrapped to minimal competency with
the PIC16F873 microcontroller during weekly advising ses-
sions. The microcontroller was programmed in C, but the
overall design and code complexity ended up being equivalent
to approximately one lab exercise in the current microcontrol-
ler course. This frustrating experience (among many) was one
of the drivers for the microprocessor course revision. Figure 1
shows a completed project from the Spring 2008 capstone
course (USB scope with two 60 MB/s capture channels, and
one function generator channel). Complexity differences be-
tween the designs in Figure 1 and Figure 3 are obvious.

For another comparison, of the eleven EE Capstone
projects for Spring ’02-Fall ’02, three did not include a micro-
controller component. Of the remaining projects, about half
were programmed in assembly language, with a simplistic
application. Some teams from the Spring' 02-Fall '02 did have
team members that had taken the elective follow-on microcon-
troller course and the projects for those teams were more so-
phisticated. By contrast, of the eleven capstone projects for
Fall ’07-Spr ’08, all had microcontrollers, with applications
written in C, with applications complexity varying from me-
dium to high.

Another measure of progress is the recent performance of
the MSU IEEE Southeastern Conference (SECON) student

hardware competition team (the hardware competition is this
team's design project for the capstone course). The hardware
competition typically involves autonomous robots performing
some task on a small playing field. Since 2005, after the
course changes from the curriculum change had time to perco-
late to the senior capstone course, the team has placed in the
top three teams several times (1st: 2005 and 2007; 2nd: 2008,
3rd: 2006). Each time the competition has been against 20+
teams (and usually 30+). The SECON success cannot be attri-
buted fully to the microprocessor course change, but we feel
that the course change has made a substantial contribution. We
had experienced some previous successes in the SECON
hardware competition -- winning it in 2003, and usually fi-
nishing in the top 10, but not with the consistency and high
achievement recently demonstrated.

V. CONCLUSIONS AND FUTURE WORK
The ever-growing complexity of microcontrollers chal-

lenges the educator while also providing unique abilities to
equip students with the ability to create large, complex sys-
tems. The evolution of the approach developed produced a
textbook which includes a hands-on laboratory experience.
Quantitative results show a significant improvement in the
quality and complexity of the resulting capstone design
projects, validating this approach.

REFERENCES
[1] J. Peatman, Embedded Design with the PIC18F452, ISBN: 0-13046-

213-6, Prentice Hall, August 2002, 420 pp.
[2] R. Tocci, F. Ambrosio, Microprocessors and Microcomputers:

Hardware and Software, 6/E, ISBN: 0-13060-904-8, March 2002, 612
pp.

[3] R. Reese, J. W. Bruce, and B. A. Jones, “Microcontrollers: From
Assembly Language to C Using the PIC24 Family,” Cengage Learning,
Dec. 2008, 838 pp.

[4] R. Barnettt, S. Cox, and L O'Cull, Embedded C Programming And The
Atmel AVR, CENGAGE Delmar Learning, June 2006, 560 pp.

[5] Han-Way Huang, PIC Microcontroller: An Introduction to Software &
Hardware Interfacing, CENGAGE Delmar Learning, July 2004, 816
pp.

[6] Texas Instruments, CC2480: Z-Acell 2.4 GHz Zigbee® Processor,
CC280 Datasheet SWRS074A, 43 pp. Available online at
http://focus.ti.com/lit/ds/symlink/cc2480a1.pdf.

[7] DPAC Technologies, Airborne™ Wireless LAN Node Module Data
Book, 39L3702-01 Rev. D 10/25/2004, www.dpactech.com, 128 pp.

[8] Future Technology Devices International, Vinculum VNC1L Embedded
USB Host Controller IC, Datasheet version 0.97, 2007, 17pp. Available
online at http://www.vinculum.com/documents/datasheets/
DS_VNC1L-1A.pdf.

[9] R. Reese, "Embedded System Emphasis in an Introductory
Microprocessor Course", 2005 ASEE Annual Conference &
Exposition, June 12-15, 2005, Portland, Oregon, poster session.

[10] R. Reese, Microprocessors: From Assembly to C with the PIC18xx2,
ISBN: 1-58450-378-5, Thomson Delmar Publishing, July 2005, 664 pp.

[11] R. Traylor, D. Heer, and T. Fiez. “Using an Integrated Platform for
Learning™ to Reinvent Engineering Education”. IEEE Transactions on
Education, v46, No 4, 2003, pp 409-419.

[12] M LaPedus, "Renesas seeks control of controller arena", EETimes,
March 14, 2008. Available online at
http://www.eetimes.com/showArticle.jhtml?articleID=207200324.

[13] W. A. Stapleton, "Microcomputer Fundamentals for Embedded
Systems Education", 36th ASEE/IEEE Frontiers in Education
Conference, Oct. 28-31, 2006, Session M2D.

Figure 3. Two Photos of Complete Projects, Capstone Course, Fall 2002

(left), Fall 2001 (right)

175

	MAIN MENU
	Program Guide
	Table of Contents
	Author Index
	Keyword Index

	Search
	Print
	View Full Page
	Zoom In
	Zoom Out
	Help

