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The development of large scale wind farms that can compete with conventional energy resources
presents significant challenges to today’s wind energy industry. A powerful solution to these daunting
challenges can be offered by a synergistic consideration of the key design elements (turbine selection and
placement) and the variations in the natural resource. This paper significantly advances the Unrestricted
Wind Farm Layout Optimization (UWFLO) method, enabling it to simultaneously optimize the placement
and the selection of turbines for commercial-scale wind farms that are subject to varying wind condi-
tions. The advanced UWFLO method avoids the following limiting traditional assumptions: (i) array/grid-
wise layout pattern, (ii) fixed wind condition, or unimodal and univariate distribution of wind conditions,
and (iii) the specification of a fixed and uniform type of turbine to be installed in the farm. Novel
modifications are made to the formulation of the inter-turbine wake interactions, which allow turbines
with differing features and power characteristics to be considered in the UWFLO method. The annual
energy production is estimated using the joint distribution of wind speed and direction. A recently
developed Kernel Density Estimation-based model that can adequately represent multimodal wind data
is employed to characterize the wind distribution. A response surface-based wind farm cost model is also
developed and implemented to evaluate and favorably constrain the Cost of Energy of the designed farm.
The selection of commercially available turbines introduces discrete variables into the optimization
problem; this challenging problem is solved using an advanced mixed-discrete Particle Swarm Opti-
mization algorithm. The effectiveness of this wind farm optimization methodology is illustrated by
applying it to design a 25-turbine wind farm in N. Dakota. A remarkable improvement of 6.4% in the farm
capacity factor is accomplished when the farm layout and the turbine selection are simultaneously
optimized.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Wind farm planning — overview

The engineering planning of a wind farm generally includes (but
is not limited to) critical decision-making, regarding

i. the layout of the turbines in the wind farm,

In recent years, growing climate change concerns and unstable ii. the number of wind turbines to be installed, and
fossil fuel prices have increased the focus on sustainable energy iii. the types of wind turbines to be installed.

resources, such as wind and solar energy. However, the global
contribution of wind energy was only 2.5% of the worldwide
electricity consumption at the end of 2010 [1]. For wind energy to
play a more prominent role in the future energy market, the
pressing issues of wind farm under-performance should be
particularly addressed. Such advancement can be realized in part
through better engineering planning of wind farms.
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Two primary objectives of optimal wind farm planning are to
minimize the Cost of Energy (COE) expressed in $/kWh, and/or to
maximize the net energy production. The energy produced by
a farm over a time period is a function of the above-listed design
elements and of the variations in the natural resource (primarily
the variation of wind speed and direction). Hence, the distribu-
tion of wind speed and direction over the concerned time period
must be appropriately considered during the planning of a wind
farm. A general overview of wind farm optimization is provided
in the next section.
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1.2. Wind farm optimization

1.2.1. Literature survey

The total power extracted by a wind farm is in general signifi-
cantly less than the simple product of “the power extracted by
a stand-alone turbine” and “the number of identical turbines (N)” in
the farm [2]. This deficiency can be attributed to the loss in the
availability of energy due to wake effects — the shading effect of
a wind turbine on other turbines downstream from it [3]. Energy
deficit due to mutual shading effects is generally determined using
wake models that quantify the growth of the wake and the velocity
deficit in the wake as functions of the distance downstream from
a turbine. Several popular analytical wake models [4—8] and
computational wake-flow analysis [9—12] exist in the literature.

The loss of energy due to wake effects can be minimized by
careful planning of the placement/arrangement of turbines in
a farm, more popularly know as farm layout planning. A majority of
the methods developed to design wind farm layouts can be clas-
sified into the following two class of approaches (see Fig. 1): (i)
models that assume an array like (row—column) farm layout [2,13],
and (ii) models that divide the wind farm into a discrete grid in
order to search for the optimum grid locations of turbines [3,14—
17]. Some of the recent methods have made additional important
contributions to farm layout decision-making. For example, Gon-
zalez et al. [16] considers the road layout, the load bearing capacity
of the soil, and the presence of other forbidden zones within the
farm site in the context of farm layout planning. Chen and Mac-
Donald [17] consider the role of local landowners in the planning of
farm layouts.

However, a majority of the existing approaches do not provide
the much needed synergistic consideration of (i) the arrangement
and (iii) the selection of turbines, as shown by Chowdhury et al.
[18]. The energy production capacity of turbines as part of an array
strongly depends on the type(s) of turbines installed in the farm —
turbines both react to the incoming wind flow and modify the wind
flow pattern inside the farm. At the same time, turbines that are
more likely to be in the wakes of others throughout the year may
face an apparently lower wind class (in their lifetime) than that
estimated for a stand-alone turbine at the site. This phenomenon
incites an exploration of the benefits of using multiple types of
turbines installed in a particular arrangement in a wind farm, which is
rare in the literature .

In addition, the existing wind farm layout optimization methods
make limiting assumptions regarding the resource variations when
estimating the energy production over a time period. The nature of
wind resource variation (or the lack of it) assumed in the literature
can be classified into the following categories:

1. Unidirectional wind with constant speed;

2. Unidirectional wind (or a couple of prevalent wind directions)
with a distribution of speed

3. Small number of wind direction sectors each with a speed
distribution (like in a windrose diagram)

4. Constant speed wind with equal frequency from all directions

It is evident from this classification that a majority of the wind
farm layout optimization methods do not account for the actual joint
distribution of wind speed and direction. Significant inaccuracies can
be introduced into the estimation of the energy production, when
such assumptions are made regarding the wind resource variation.

The Unrestricted Wind Farm Layout Optimization (UWFLO)
methodology, introduced by Chowdhury et al. [18], avoids the
limiting assumptions presented by other methods regarding the
layout pattern and partly regarding the selection of turbines. In the
UWEFLO framework, the turbine location coordinates are treated as
continuous variables, which allows all feasible arrangements of the
turbines to be considered. This unrestricted layout modeling
approach is similar to the approach presented by Kusiak and Zheng
[19]. In addition, the original UWFLO method allowed turbines with
differing rotor-diameters in order to favorably modify the flow
pattern within the farm and increase the net energy production.
The original UWFLO framework however assumed a unidirectional
and fixed-speed incoming wind, and also did not account for
turbines with differing hub-heights and power characteristics.
Appropriate consideration of the variation of wind speed and
direction and a provision to use multiple types of commercially
available turbines are necessary to extend the applicability of the
UWFLO methodology to commercial-scale wind farm design.

1.2.2. Objectives of this research
The overall objective of this paper is to significantly advance the
original UWFLO methodology by:

i. Estimating and using the joint distribution of the wind speed
and direction at the concerned site to determine the annual
energy production of the farm;

ii. Modifying the power generation model to allow multiple
types of commercial-scale turbines (in the farm), i.e. turbines
with differing rotor-diameters, hub-heights, and perfor-
mance characteristics;

iii. Evaluating the cost of the wind farm using an accurate Response
Surface-based Wind Farm Cost model (RS-WFC) [20]; and

iv. Implementing a newly developed mixed-discrete Particle
Swarm Optimization (PSO) algorithm [21] to solve the wind
farm design problem.
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Fig. 1. Existing approaches in wind farm layout optimization (D — turbine rotor-diameter).
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To the best of the authors’ knowledge, such a comprehensive
optimal wind farm design strategy is unique in the literature.

The advancements to the UWFLO method is presented in the
next section. The application of the advanced UWFLO method and
the corresponding results and discussion are presented in Section
3. Section 4 presents the concluding remarks of this research.

2. Advancing the Unrestricted Wind Farm Layout
Optimization (UWFLO) method

2.1. Overview of the original UNWFLO framework

In the UWFLO power generation model, the growth of the wake
behind a turbine is determined using the wake growth model
proposed by Frandsen et al. [8]. The corresponding energy deficit
behind a turbine is determined using the velocity deficit model
presented by Katic et al. [5]. In a wind farm, the velocity of the wind
approaching a turbine can be affected by the wake of multiple
turbines upstream from it [22]. This wake merging scenario is
modeled in the UWFLO method using the wake superposition
model developed by Katic et al. [5]. The possibility of a turbine to be
‘partially’ in the wake of another turbine located upwind is also
considered in the UWFLO power generation model. The UWFLO
wind farm power generation model has been successfully validated
by Chowdhury et al. [18] against published experimental data [23].

Particle Swarm Optimization [24] is applied to optimize the
farm layout with the objective of maximizing the total energy
production. The farm dimensions and the minimum distance
required between any two turbines are treated as system
constraints during optimization. In commercial wind farm plan-
ning, there are other site-specific factors that might further restrict
the arrangement of turbines, such as (i) the topography and the
terrain, (ii) the grid connection, (iii) the load bearing capacity of the
soil, and (iv) the planned/existing road layout in the farm [16]. The
consideration of these site-specific factors are however not within
the scope of this paper.

In the following subsections, we briefly discuss how this paper
advances the key components of the original UWFLO method.
These advanced features provide helpful flexibility to the UWFLO
method, and extends its applicability to designing full scale
commercial wind farms.

2.2. Estimating the wind farm power generation

Chowdhury et al. [18] modeled the incoming wind as a rotor
averaged uniform wind speed, which was estimated from the
incoming wind profile reported by Cal et al. [23]. In the case of
atmospheric boundary layer, a similarity study can be performed to
describe the vertical profiles of turbulence statistics when fully
developed conditions are reached [25]. Assuming neutral condi-
tions (negligible thermal effects) in the surface layer, which is
applicable for heights less than 100 m, the mean velocity can be
represented by the log-profile [25]. For a known measured wind
speed Uy, at a height z,, the log-profile can be expressed as
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where U represents the wind speed at a height z. The average
roughness length in the farm region, represented by zp in Eq. (1),
depends on the local terrain and type of vegetation. A uniform
incoming flow that is equivalent to “the logarithmic velocity profile

(in Eq. (1)) integrated and averaged over the rotor area” is used in this
model.

The wind turbines are assigned fixed X—Y coordinates, from
which transformed coordinates can be determined for any given
wind direction; the transformed positive X-axis (denoted by x) is
always aligned along the wind direction. An inequality was used in
the original UWFLO power generation model [18] to determine
whether a turbine is in the influence of another turbine; this
formulation assumed the two turbines to be identical. In order to
allow turbines with differing features, the following new inequality
is formulated: Turbine-j is in the influence of the wake created by
Turbine-i, if and only if

Ax; <0 and (Ayij>2+(AH,-j)2 - % < @, where
Axj = x;—x;, Ay; =y —y;, AHj = H;—H;
Vi, j=1,2,...,N; i#j

(2)

In Eq. (2), Dj and H;j are respectively the rotor-diameter and the
hub-height of Turbine-j, and H; is the hub-height of turbine-i. The
parameter Dyske,jj Tepresents the diameter of the wake produced by
Turbine-i and immediately approaching Turbine-j; the growth of
the wake diameter with distance downstream from the turbine is
estimated using the wake growth model developed by Katic et al.
[5]. The parameters x; and x; respectively represent the coordinates
of turbine-i and turbine-j measured “along” the streamwise direc-
tion. The parameters y; and y; respectively represent the coordi-
nates of turbine-i and turbine-j measured “perpendicular to” the
streamwise direction. The parameter N represents the number of
turbines in the farm.

For the given wind direction, the turbines are ranked in the
increasing order of their streamwise location. The approaching
wind speed for each turbine is then determined in the order of their
rank. The wake velocity deficits behind each turbine are deter-
mined as functions of the downstream distance, using the 1D wake
model proposed by Frandsen et al. [8]. The wake velocity imme-
diately behind the turbine is estimated from the induction factor. A
variable induction factor, dependent on the turbine power char-
acteristics and the incoming wind velocity, is used [18]. Considering
the possibility of the influence of multiple upstream turbines,
a standard wake superposition principle [5] is used to determine
the effective speed (U;) of the wind approaching turbine-j. The
possibility of partial wake-rotor overlap [18] is also considered.

The power generated by turbine-j is determined using the
turbine power curve, which gives the power generated by the
turbine (P;) as a function of the approaching wind velocity (U;).
However, information regarding the “power vs. wind speed” varia-
tion is not readily available for every major commercial turbines;
generally, the rated power, the rated speed, and the cut-in and cut-
out speeds are specified by the turbine manufacturer (in their
online brochures). Therefore, a generalized power curve (P,) is
developed using the power response data for a popular turbine
type: GE 1.5 MW xle [26]. To this end, a 5th degree polynomial is
fitted to the power response data, as shown in Fig. 2. As seen from
this figure, the power generated (P) by the turbine is normalized
using the rated power (P;) of the turbine, and the incoming wind
speed (U) is normalized using the cut-in speed (Ujy) and the rated
speed (Ury) of the turbine.

The generalized power curve is assumed to hold for all currently
available turbines. This generalized power curve is scaled back to
represent the approximate power response of a particular
commercial turbine, using its rated power (P;), cut-in speed (Ujy),
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Fig. 2. Power curve of GE 1.5 MW xle turbine.

cut-out speed (Uyyt), and rated speed (U;) specifications, as given
by:

po(Y=Un . if Uy < U< U;
B — Ur—Uin . (3)
P; 1, if Ur <U < Uout

07 if Uout <UorUcx Uin

where P, represents the polynomial fit for the generalized power
curve. This generalized power curve method has been used for
ready implementation purposes, when considering various types of
commercial turbines. However, if the power curve data/expression
is available for a particular wind turbine, it can be directly used
within the wind farm power generation model.

Therefore, the power generated by any turbine-j is estimated
using Eq. (3) and the specifications of that turbine reported by the
manufacturer. Once the power generated by each individual
turbine has been estimated (in the order of their rank), the net
power generated by the farm, Pgyrm, is given by

N
Prarm = ZP] (4)
j=1

where N is the number of turbines in the farm.

2.3. Considering the impact of wind resource variations on the farm
output

The power generated by a wind turbine is strongly dependent
on the approaching wind speed. The fraction of the energy lost by
the wind while flowing across a turbine (often represented by the
induction factor) also depends on the approaching wind speed. For
a given farm layout, the wind direction is another major factor that
regulates the overall flow pattern (wake patterns) inside the wind
farm. The prediction of the expected annual energy production
(AEP) of a wind farm should therefore adequately account for the
correlated variations in wind speed and wind direction. To this end,
the following two-step procedure is applied:

i. The annual distribution of the wind speed and direction is
represented using a suitable probability density function.

ii. The power generation function is integrated over the entire
annual wind distribution to yield the AEP.

These two steps are discussed in the following subsections.

2.3.1. Distribution of wind speed and direction

In the literature, one of the most widely-used models for char-
acterizing the wind speed variation is the 2-parameter Weibull
distribution [27—-29]. Several other distribution models are also
used to represent variation of wind conditions, e.g., Rayleigh and
Lognormal distributions [29,30]. The direction of wind, which plays
an important role in regulating the power generation of a wind
farm, also varies with time. Hence, a multivariate probability
distribution of the wind speed and wind direction is particularly
useful for wind farm layout modeling. To this end, Vega [31]
proposed a Weibull distribution that expressed the shape param-
eter and the scale parameter as stochastic functions of the wind
direction.

A majority of the existing wind distribution models make
limiting assumptions regarding the dimensionality (univariate
assumption) and the modality (unimodal assumption) of the vari-
ation in wind conditions. In this paper, a newly developed Multi-
variate and Multimodal Wind Distribution (MMWD) model [32,33]
is used, which avoids such limiting assumptions. This model is
developed using multivariate kernel density estimation (KDE) [34].
KDE is an effective non-parametric method of estimating the
probability density function of random variables. Further descrip-
tion of the MMWD model can be found in the paper by Zhang et al.
[33].

The site used as the case study later in this paper is located at
Baker, in North Dakota. The recorded wind data for this site is ob-
tained from the North Dakota Agricultural Weather Network
(NDAWN) [35]. We use the daily averaged data for wind speed and
direction, measured at the Baker station between the years 2000
and 2009. Description of Baker weather station is provided in
Table 1. It is helpful to note that the wind speed data is recorded at
a height of 3 m; the log-profile from Eq. (1) is used to determine the
wind speed at the pertinent hub-heights. The variation of wind
speed and direction at the Baker station is illustrated by a Windrose
diagram in Fig. 3. In this diagram, each of the sixteen sectors
represent the respective probability of wind blowing from that
direction.

2.3.2. Estimating the annual energy production (AEP)
The AEP of a wind farm in kWh (Efym) at a particular location
can be expressed as

360° Unmax

Eiam = (365x24) [ [ Pram(U.0)p(U. O)dUd0 (5)
0° 0

where, Upax is the maximum possible wind speed at that location,
and Pryrm(U,0) represents the power generated by the farm (in kW)
for a wind speed U and a wind direction 6. In Eq. (5), p(U,6)

Table 1
Details of the NDAWN station at Baker, ND [35].
Parameter Value
Location Baker, ND
Period of record 01/01/2000 to 12/31/2009
Latitude 48.167°
Longitude —99.648°
Elevation 512 m
Measurement height 3m
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Fig. 3. Windrose diagram for Baker station, ND (Years 2000—2009).

represents the probability of the occurrence of a wind condition
defined by speed U and direction f. The power generated by the
entire wind farm is a complex function of the incoming wind
properties, the arrangement of turbines, and the turbine features.
Hence, a numerical integration approach [19] is suitable for esti-
mating the AEP as given by Eq. (5). To this end, the Monte Carlo
integration method is implemented using the Sobol’s quasirandom
sequence generator. The approximated AEP is readily given by the
summation of the estimated power generations (Pgrm(U'0")) over
a set of randomly distributed N, wind conditions, which is
expressed as

Epym = (365 x 24) z Pfarm(u a') ( ai)AUAa, where

AUAG — Upay x 360° /Np
(6)

In this equation, the parameters U and §' respectively represent
the speed and the direction of the incoming wind for the ith sample
wind condition.

A commonly used measure of wind farm performance is the
farm capacity factor. The capacity factor of a wind farm can be
defined as the ratio of “the actual or expected output of the farm
(AEP) over a time period” and “the potential output if the farm was
operating at full nameplate capacity throughout that time period”.
The annual wind farm capacity factor (CF) can be expressed in
percentage as

CF = Efarm
(365 x 24) 21 Py
Jj=

x 100 (7)

where Py represents the rated power of the jth turbine, and the
expression Z]J P,j represents the nameplate capacity of the farm.

2.4. Determining the cost of energy

Numerous models have been developed to evaluate the cost of
onshore and offshore wind farms in the last twenty years. Notable
examples include: Short-cut model [36], OWECOP-Prob cost model
[37], JEDI-wind cost model [38] and the Opti-OWECS cost model
[39]. In this paper, we develop and implement a response surface-
based wind farm cost (RS-WFC) model that is founded on the
principles proposed by Zhang et al. [20]. Such a cost model has two

major advantages: (i) the cost is represented by a continuous
analytical function that can be easily used as a criterion function in
optimization irrespective of the search strategy; and (ii) the esti-
mated cost function is helpfully adaptive to the local cost data
provided for training the model. In this paper, the estimated annual
cost of the farm is represented as a function of the number of
turbines in the farm and the turbine rated powers.

Radial Basis Functions are used to develop the cost response
function in this paper. The idea of using Radial Basis Functions (RBF)
as approximation functions was introduced by Hardy [40] in 1971.
Since then, RBF has been used to approximate multidimensional
scattered data for various applications. In creating the cost response
function, the annual farm cost is expressed in dollars per kW
installed ($/kW). For a wind farm comprising N turbines, each with
rated power P;, the RS-WEFC function, Cost(P,N), is expressed as

p
Cost(P;,N) = Za,\/ P; — Pl +(N - N') +c2 (8)
i=1

where Pl and N' respectively denote the turbine rated power and
the number of turbines in a farm corresponding to the ith training
data. The value of the prescribed constant c is specified to be 0.9 in
this paper. The generic unknown coefficients, ¢;, are evaluated
using the pseudoinverse technique.

In the case of a wind farm comprising different types of turbines,
the cost function should be modified. To this end, the total annual
cost in dollars can be represented using a more generic expression,
as given by

nt
COStrarm = > cOst(Pﬁ,Nk) x Pk % Nk 9)
k=1

where n; denotes the number of different turbines types used in the
wind farm; the parameter N represents the number of turbines of
type-k in the farm, which have a rated power P¥, expressed in kWs.
In this case, the total number of turbines (N) in the farm is equal to
SR Nk, Subsequently, the COE (in $/kWh) can be estimated as

Costearm

COE = (10)

farm

where Efar, is the AEP of the farm in kWh (as given by Eq. (6)).

In this paper, the cost response functions are trained using
data provided by the Wind and Hydropower Technologies
program (US Department of Energy) [38]. The cost of a commer-
cial wind farm is however a complex function that depends on
several other economic and environmental factors/variables as
well. The objective of the bivariate cost function developed in this
paper is to specifically explore the benefits of (i) optimally
selecting the turbine type and (ii) using multiple types of turbines
in the farm.

2.5. Formulation of the optimization problem

The objective of the wind farm optimization problem consid-
ered in this paper is to maximize the annual energy production for
a specified farm-land size and number of turbines. To this end, the
advanced UWFLO method simultaneously optimizes the farm
layout and the selection of wind turbines. The optimization
problem is solved using a Mixed-Discrete Particle Swarm Optimi-
zation (MDPSO) algorithm developed by Chowdhury et al. [21,41].
The design variables in the generic optimization problem are the
location coordinates of each turbine (continuous variables) and
type of the turbine (integer variable). Using the online data
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provided by the major turbine manufacturers catering to the US
onshore market, an integer code T* is assigned to each unique
turbine-type-k. A turbine-type is defined by a unique combination
of rated-power, rotor-diameter, hub-height, and performance
characteristics. A list of 66 turbine-types, with rated-powers
ranging from 0.6 to 3.6 MW, was prepared and coded from the
major turbine manufacturers.
The overall farm optimization problem is defined as

Efarm

Max f(V) = (365 x 24)NP,g

subject to
5a(V)<0
&WV)<0
g(V)<0

where Pyg is the rated-power of a reference turbine, which is used to
normalize the optimization objective. The parameters T; and T™%* in
Eq. (11) respectively represent the type code of the generic ith
turbine and the total number of turbine-types considered; and V
represents the design variable vector for optimization.

The inequality constraint g1 represents the minimum clearance
required between any two turbines, and is given by

N N
g1(V) = E] > max((D; +Dj + A min — djj),0), where
i=1j-1
j#i
dij = ,/Axizj—kAy,.zj
(12)

In Eq. (12), D; and D; represent the rotor-diameters of Turbine-i
and Turbine-j, respectively; and A min iS the minimum clearance
required between the outer edge of the rotors of the two turbines.
In this paper, the value of A min 1S set at zero, to allow maximum
flexibility in turbine spacing. In practice, a higher value of /\ pi, is
necessary to account for factors such as dynamic loading on the
turbines.

To ensure the placement of wind turbines within the fixed
boundaries of the wind farm-land, the constraint g, is specified,
which can be expressed as

1 1 &
&(V) = 5N <Xfarm ;ma)(( =X, X *Xfarm70>

N

Yfarm ; max( — Y5, Yi — Yarm, 0))

+

where the parameters X and Yem represent the extent of the
rectangular wind farm in the X and Y directions, respectively.

In order to restrict the cost of energy (COE) of a feasible candi-
date wind farm design to a reference COE, the constraint g3 is
applied. This constraint is defined as

83(V) = (COE — COEyer ) /COEres (13)

where COE,¢f is the cost of a farm with an optimized layout and
a specified uniform turbine type (reference turbine) having a rated
power, Pro. The cost functions are estimated using Eq. (8).

3. Case study: designing a commercial-scale wind farm
3.1. Case study description

In this paper, we explore and compare three different scenarios
in the optimal design of a commercial wind farm. In all the three
cases, the number of turbines and the farm-land size are assumed
to be fixed. The three scenarios are:

Case 1: Optimize the layout of a wind farm that is comprised of
a defined turbine-type (reference type).

Case 2: Simultaneously optimize the farm layout and the type of
turbine to be installed, considering that a uniform turbine-type is
used for the whole farm.

Case 3: Simultaneously optimize the farm layout and the
turbine-type of each turbine used in the wind farm, thereby
allowing multiple turbine types.

Cases 1, 2 and 3 present 2N, 2N + 1, and 3N design variables,
respectively. The cost constraint, g3, is applied only in Cases 2 and 3
in order to restrict the COE of feasible farm designs in these cases to
the COE of the optimized farm obtained in Case 1 (that uses a fixed
uniform turbine type). This cost constraint ensures that the gain in
energy production accomplished through the optimal selection of
turbine type and/or the use of multiple turbine types is not asso-
ciated with an increase in the COE of the farm.

The “GE 1.5 MW xle” turbine [26] is chosen as the specified
turbine-type in Case 1, and as the reference turbine-type in Cases 2
and 3. The features of this turbine are provided in Table 2. This
turbine is reported to be suitable for IEC Wind Class IlI-b, and has an
average velocity specification of 8.0 m/s. For the NDAWN site at
Baker, ND, the average wind speed at the reference turbine hub-
height (of 80 m) is found to be 8.89 m/s and 8.92 m/s from the
estimated wind distribution and the recorded data, respectively.
Although, the “GE 1.5 MW xle” turbine is expected to perform well
for this site, it may not be the best choice for the given wind
conditions at this site. The optimization framework is however not
sensitive to this choice, since using a particular specified turbine
type is implicit and most likely sub-optimal to the scenario where
turbine-types are allowed to vary. For Cases 1 and 2, the PSO
algorithm is allowed 200,000 function evaluations. Case 3 presents
a more complex mixed-discrete optimization problem, and is
therefore allowed 300,000 function evaluations.

All the three case studies are performed for a hypothetical wind
farm site at the North Dakota location described in Section 2.3.1. A
fixed-size rectangular land is considered for the wind farm
comprising 25 turbines. The specified wind farm properties are
given in Table 3. The farm is oriented such that the positive X-
direction of the layout coordinate system points towards the South.
The specified rectangular farm dimensions correspond toa 5 x 5
array configuration with 7D x 3D inter-turbine spacing.

The prescribed parameters in the mixed-discrete PSO specified
for each case is summarized in Table 4. The coefficients «, 8}, 8¢, and
vo in Table 4, respectively regulate the inertia, the personal
behavior, the social behavior, and the diversity preserving behavior
of the particles. Further description of these parameters and their

Table 2

Features of the “GE 1.5 MW xle” turbine [26].
Turbine feature Value
Rated power (Pro) 1.5 MW
Rated wind speed (Uyo) 11.5 m/s
Cut-in wind speed (Uino) 3.5m/s
Cut-out wind speed (Uoyto) 20.0 m/s
Rotor-diameter (Do) 825 m
Hub-height (Ho) 80.0 m
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Table 3
Specified wind farm properties.
Farm property Value
Location Baker, ND (refer Table 1)
Number of turbines 25
Land size (length x breadth) (4 x 7Dg) x (4 x 3Dy)

Orientation
Average roughness
Density of air

North to South lengthwise
0.1 m (grassland)
1.2 kg/m?

influence on the dynamics of swarm motion can be found in the
papers by Chowdhury et al. [21,41].

3.2. Results and discussion

The optimization converged in Cases 1 and 2. However, Case 3
was only partially converged in the specified number of function
evaluations. The convergence histories for the different Cases are
shown in Fig. 4. The objective on the Y-axis is the normalized
annual-average farm power (representative of the net energy
production), given by Eq. (11). Further crucial details of the opti-
mized wind farms in the three cases are provided in Table 5. The
reference wind farm in Table 5 is comprised of “GE 1.5 MW xle”
turbines, arranged in a 5 x 5 array layout with 7D x 3D turbine
spacing. The normalized energy production (objective f) and the
COE for the reference wind farm is estimated to be 0.597 and
$0.024, respectively.

From Fig. 4, we observe that the maximum improvement in net
energy production is accomplished in Case 2. Expectedly, simulta-
neous optimization of the farm layout and the selection of
a uniform turbine-type (Case 2) provided a remarkably higher
increase in farm energy production compared to that provided by
layout optimization alone. This observation illustrates, how criti-
cally important it is to perform turbine selection in coherence with
farm layout design. However, a lower increase in the energy
production in Case 3 compared to Case 2 is counterintuitive since
optimal results produced by Case 2 should be suboptimal to, or at
least a subset of, the optimal results produced by Case 3. We believe
that owing to the significantly higher complexity of the mixed-
discrete optimization problem in Case 3 (an additional N — 1
discrete variables), only suboptimal results were obtained. Further
advancement of the optimization methodology should be able to
address this issue.

Table 5 shows that the COE for the optimized farm in Cases 2 and
3 are comparable with Case 1. Progressively higher rated turbines
were selected during optimization in Cases 2 and 3, which is one of
the factors that helped in the remarkable increase in the farm
energy production. The capacity factor (CF) of the farm therefore
provides a more unbiased measure (than net energy production) of
the performance of the optimized farm. As seen from Table 5, the
capacity factors obtained in Cases 2 and 3 are significantly better
than that in Case 1. Furthermore, the capacity factors for the

Table 4
User-defined constants in PSO.
Parameter Case 1 Case 2 Case 3
a 0.5 0.5 0.5
Bg 14 1.4 1.4
61 14 14 14
Yo 20 10 10
Population size 20 x 2N = 1000 20 x (2N + 1) = 1020 20 x 3N = 1500
Allowed number of 200,000 200,000 300,000
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Fig. 4. Convergence histories for the three cases.

optimized farms in all the three cases are observed to be higher by
4.3%—6.4%, when compared to the reference wind farm.

The estimated capacity factors of the optimized farms and the
reference farm are found to be considerably higher than that typical
of commercial onshore wind farms (around 20—40%). For example,
one of highest recorded annual capacity factors is reported to be
57.9% for a 3.68 MW Burradale wind farm at Shetland Islands [42].
In this paper, project-specific power loss factors are not considered,
leading to an overestimation of the farm capacity factor in the case
studies. Project-specific power loss factors include: turbine down-
time for O&M, extreme weather conditions, snow accumulation,
and curtailments (e.g., noise/environmental curtailment and grid
curtailment). The overestimation of the capacity factor can also be
partially attributed to a possible underestimation of the wake los-
ses determined by the analytical wake models used in the UWFLO
framework.

The turbine-type optimally selected in Case 2 is a 3 MW-112 m
wind turbine. In Case 3, the optimized farm is comprised of
a combination of eight 1.8 MW-90 m, five 3.0 MW-112 m, four
1.8 MW-100 m, four 2.4 MW-102 m, two 2.0 MW-90 m, one
2.4 MW-95 m, and one 2.5 MW-100 m turbines. The optimized
farm layouts for Cases 1 and 2 are shown Figs. 5(a) and (b), where
the dashed line represents the farm boundary. The squares that
represent the turbine locations are colored according to the annual
average power generation of the corresponding turbines. The
significantly scattered arrangement of turbines obtained through
layout optimization is a noticeable deviation from any array
pattern. In Cases 1 and 2, the turbines located on the Eastern edge
of the farm produce relatively lower energy over the year. This
phenomenon agrees with the Windrose diagram in Fig. 3, which
shows that the likelihood of incoming winds from the East is
minimal. It is also observed that the differences in the energy
production between turbines that generate the maximum and the
minimum power annually is only 7.5% and 9.5% for Cases 1 and 2,
respectively. This observation indicates an appreciable reduction in
wake effects can be achieved through the application of the UWFLO
method.

Table 5
Attributes of the optimized wind farms from the case studies.

Parameter Case 1 Case 2 Case 3 Reference farm

Normalized AEP (f) 0.623 1.271 0.933 0.597

Farm capacity factor (CF) 62.3% 63.5% 63.5% 59.7%
COE (in $/kWh) 0.023 0.022 0.023 0.024
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Fig. 5. Layouts of the optimized wind farms with identical turbines, showing the individual turbine power generations.

Fig. 6(a), (b), (c) and (d) represent the optimized layout obtained
in Case 3, where the turbine locations are colored according to the
(i) annual average power generation, (ii) rated power, (iii) rotor-
diameter, and (iv) hub-height of the turbines, respectively. It is
most interesting to note (from Fig. 6(b)) that the UWFLO has placed
the turbines with higher rated-powers on the Eastern edge of the

wind farm. These higher rated power turbines are more suitable for
lower incoming wind speeds (lower wind classes), as experienced
by the Eastern edge of the farm. These higher rated power turbines
generally involve larger rotor-diameters as observed in Fig. 6(c).
Their location on the Eastern edge of the farm thereby ensures
minimal impact of the likely larger wakes created by these turbines.
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4. Conclusion

This paper developed a methodology to design optimal
commercial-scale wind farms, through significant advancement of
the Unrestricted Wind Farm Layout Optimization (UWFLO) meth-
odology. This wind farm design methodology provides optimal
decision-making regarding both what turbines to install and where
to install them, which is unique in the wind energy literature. At the
same time, the advanced UWFLO method also considers the local
long-term variations of wind speed and direction at a site. The wind
variations are modeled using an accurate joint distribution of wind
speed and direction. The power generation model is modified to
account for wind turbines with differing hub-heights and perfor-
mance characteristics. This modification allows the use of multiple
types of turbines in a wind farm — a concept that can help increase
the capacity factors of future wind farms well beyond what is
currently feasible. In order to account for the economic viability of
optimizing the selection of turbines, we used a response surface-
based wind farm cost model. In this paper, the selection of
turbine(s) is primarily based on their overall energy production
capacity as members of the array, corresponding to a given wind
distribution. In practice, the survivability of turbine components,
which depends on its load bearing capacity (given by its IEC
ratings), is another important consideration in turbine selection.
The incorporation of the survivability of turbine components as an
additional design objective is therefore a key topic for future
research in optimal turbine selection.

The overall commercial-scale wind farm design model presents
a complex high-dimensional mixed-discrete optimization problem
that is solved using a newly developed mixed-discrete Particle
Swarm Optimization algorithm. The new wind farm optimization
method is applied to design wind farms comprising 25 turbines on
a rectangular farm-land of specified dimensions. Three different
farm design scenarios, defined by the turbine selection approach,
were explored. Appreciable improvement in the farm performance
was observed in each of the three scenarios, when compared to
a reference farm with a 5 x 5 array configuration. Simultaneous
optimization of the farm layout and the turbine selection increased
the capacity factor by 2% more than that accomplished by layout
optimization alone. However, it was found that further improve-
ment in the optimization methodology is necessary to address the
challenging scenario where multiple turbine-types are allowed to be
optimally selected. Overall, it was successfully illustrated that the
selection of turbine-type(s) should be performed in coherence with
the farm layout planning.

Future work should address the decision-making for other wind
farm factors such as the land area per kW installed and the nameplate
capacity, within the context of optimal wind farm design. Together
with a more comprehensive cost model, such an advanced optimal
wind farm design method should provide a strong foundation for
future research (and industrial practices) in wind farm planning.

Acknowledgments

Support from the National Science Foundation Awards CMMI-
1100948, and CMMI-0946765 is gratefully acknowledged. Any
opinions, findings, and conclusions or recommendations expressed
in this paper are those of the authors and do not necessarily reflect
the views of the NSF.

References

[1] WWEA. World wind energy report 2010, Tech. rep. Bonn, Germany; April
2011.

[2] Sorensen P, Nielsen T. Recalibrating wind turbine wake model parameters
— validating the wake model performance for large offshore wind farms.

In: European wind energy Conference and Exhibition, EWEA, Athens,

Greece; 2006.

Beyer HG, Lange B, Waldl HP. Modelling tools for wind farm upgrading. In:

European Union Wind Energy Conference, AIAA, Goborg, Sweden; 1996.

Jensen NO. A note on wind generator interaction. Riso National Laboratory:

Roskilde Denmark; 1983.

Katic I, Hojstrup ], Jensen NO. A simple model for cluster efficiency. In:

European Wind Energy Conference and Exhibition, EWEA, Rome, Italy; 1986.

Ainslie JF. Calculating the flowfield in the wake of wind turbines. Wind

Engineering and Industrial Aerodynamics 1988;27:213—24.

[7] Larsen GC, Hojstrup J, Madsen HA. Wind fields in wakes. In: EUWEC; 1996.

[8] Frandsen S, Barthelmie R, Pryor S, Rathmann O, Larsen S, Hojstrup J, et al.
Analytical modeling of wind speed deficit in large offshore wind farms. Wind
Energy 2006;9(1—-2):39—-53.

[9] Jimenez A, Crespo A, Migoya E, Garcia ]. Advances in large-eddy simulation of
a wind turbine wake. Journal of Physcis: The Science of Making Torque from
Wind Conference Series 2007;75(1):012041.

[10] Troldborg N, Sorensen JN, Mikkelsen R. Numerical simulations of wake
characteristics of a wind turbine in uniform inflow. Wind Energy 2010;13:
86—99.

[11] Calaf M, Parlange MB, Meneveau C. Large eddy simulation study of scalar
transport in fully developed wind-turbine array boundary layers. Physics of
Fluids 2011;23(12).

[12] Porte-Agel F, Wua Y, Lu H, Conzemius R]. Large-eddy simulation of atmo-
spheric boundary layer flow through wind turbines and wind farms. Journal of
Wind Engineering and Industrial Aerodynamics 2011;99:154—68.

[13] Mikkelsen R, Sorensen N, Oye S, Troldborg N. Analysis of power enhancement
for a row of wind turbines using the actuator line technique. Journal of
Physics: Conference Series 2007;75(1).

[14] Grady SA, Hussaini MY, Abdullah MM. Placement of wind turbines using
genetic algorithms. Renewable Energy 2005;30(2):259—70.

[15] Sisbot S, Turgut O, Tunc M, Camdali U. Optimal positioning of wind turbines
on Gokceada using multi-objective genetic algorithm, lecture notes in
computer science. Advances in Swarm Intelligence 2009;13(4):297—306.

[16] Gonzalez ]S, Rodriguezb AGG, Morac JC, Santos JR, Payan MB. Optimization of
wind farm turbines layout using an evolutive algorithm. Renewable Energy
2010;35(8):1671-81.

[17] Chen L, MacDonald E. A new model for wind farm layout optimization with
landowner decisions. In: ASME 2011 International Design Engineering Tech-
nical Conferences (IDETC), No. DETC2011-47772. Washington, DC: ASME; 2011.

[18] Chowdhury S, Zhang ], Messac A, Castillo L. Unrestricted wind farm layout
optimization (UWFLO): investigating key factors influencing the maximum
power generation. Renewable Energy 2012;38(1):16—30.

[19] Kusiak A, Zheng H. Optimization of wind turbine energy and power factor
with an evolutionary computation algorithm. Energy 2010;35:1324—32.

[20] Zhang ], Chowdhury S, Messac A, Castillo L. A response surface-based cost
model for wind farm design. Energy Policy 2012;42:538—-50.

[21] Chowdhury S, Zhang ], Messac A. Avoiding premature convergence in
a mixed-discrete particle swarm optimization (MDPSO) algorithm. In: 53rd
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials
Conference, No. AIAA 2012-1678. Honolulu, Hawaii: AIAA; 2012.

[22] Crespo A, Herndndez ], Frandsen S. Survey of modelling methods for wind
turbine wakes and wind farms. Wind Energy 1999;2:1-24.

[23] Cal RB, Lebron ], Kang HS, Meneveau C, Castillo L. Experimental study of the
horizontally averaged flow structure in a model wind-turbine array boundary
layer. Journal of Renewable and Sustainable Energy 2010;2(1).

[24] Kennedy ], Eberhart RC. Particle swarm optimization. In: IEEE International
Conference on Neural Networks, no. IV. Piscataway, NJ, USA: IEEE; 1995. p.
1942-8.

[25] Crasto G. Numerical simulations of the atmospheric boundary layer, tech. rep.
Cagliari, Italy: Universita degli Studi di Cagliari; February 2007.

[26] GE-Energy. 1.5 MW wind turbine, http://www.ge-energy.com/products and
services/products/wind turbines/index.jsp [accessed December 2009].

[27] Burton T, David S, Jenkins N, Ervin B. Wind energy handbook. John Wiley &
Sons; 2001.

[28] Manwell JF, McGowan ]G, Rogers AL. Wind energy explained: theory, design
and application. 2nd ed. Chichester, UK: John Wiley & Sons; 2010.

[29] Carta JA, Ramirez P, Velazquez S. A review of wind speed probability distri-
butions used in wind energy analysis case studies in the Canary Islands.
Renewable and Sustainable Energy Reviews 2009;13(5):933—55.

[30] Morgan EC, Lackner M, Vogel RM, Baise LG. Probability distributions for offshore
wind speeds. Energy Conversion and Management 2011;52(1):15—26.

[31] Vega RE. Wind directionality: a reliability-based approach. Ph.D. thesis,
Department of Civil and Environmental Engineering, Texas Tech University:
Lubbock, TX; August 2008.

[32] Zhang ], Chowdhury S, Messac A, Castillo L. Multivariate and multimodal wind
distribution model based on kernel density estimation. In: ASME 2011 5th
International Conference on Energy Sustainability. Washington, DC: ASME; 2011.

[33] Zhang ], Chowdhury S, Messac A, Castillo L. A multivariate and multimodal
wind distribution model. Renewable Energy 2013;51:436—47.

[34] Simonoff JS. Smoothing methods in statistics. 2nd ed. Springer; 1996.

[35] NDSU. North Dakota agricultural weather network, http://ndawn.ndsu.nodak.
edu/ [accessed December 2010].

[36] Kiranoudis C, Voros N, Maroulis Z. Shortcut design of wind farms. Energy
Policy 2001;29:567—78.

[3

[4

(5

[6


http://www.ge-energy.com/products%20and%20services/products/wind%20turbines/index.jsp
http://www.ge-energy.com/products%20and%20services/products/wind%20turbines/index.jsp
http://ndawn.ndsu.nodak.edu/
http://ndawn.ndsu.nodak.edu/

282 S. Chowdhury et al. / Renewable Energy 52 (2013) 273—282

[37] Herman S. Probabilistic cost model for analysis of offshore wind energy costs
and potential, tech. rep. Energy Research Center; May 1983.

[38] NREL. Jobs and economic development impact (JEDI) model, tech. rep. Golden,
Colorado, USA; October 2009.

[39] Cockerill TT. Jobs and economic development impact (JEDI) model. Tech. Rep.
JOR3-CT95-0087. Sunderland, USA: Renewable Energy Centre, University of
Sunderland; 1997.

[40] Hardy RL. Multiquadric equations of topography and other irregular surfaces.
Journal of Geophysical Research 1971;76:1905—15.

[41] Chowdhury S, Tong W, Messac A, Zhang J. A mixed-discrete particle swarm
optimization with explicit diversity-preservation. Structural and Multidisci-
plinary Optimization 2012; http://dx.doi.org/10.1007/s00158-012-0851-z.

[42] REUK, http://www.reuk.co.uk/burradale-wind-farm-shetland-islands.htm, [accessed
December 2011].


http://dx.doi.org/10.1007/s00158-012-0851-z
http://www.reuk.co.uk/burradale-wind-farm-shetland-islands.htm

	Optimizing the arrangement and the selection of turbines for wind farms subject to varying wind conditions
	1. Introduction
	1.1. Wind farm planning – overview
	1.2. Wind farm optimization
	1.2.1. Literature survey
	1.2.2. Objectives of this research


	2. Advancing the Unrestricted Wind Farm Layout Optimization (UWFLO) method
	2.1. Overview of the original UWFLO framework
	2.2. Estimating the wind farm power generation
	2.3. Considering the impact of wind resource variations on the farm output
	2.3.1. Distribution of wind speed and direction
	2.3.2. Estimating the annual energy production (AEP)

	2.4. Determining the cost of energy
	2.5. Formulation of the optimization problem

	3. Case study: designing a commercial-scale wind farm
	3.1. Case study description
	3.2. Results and discussion

	4. Conclusion
	Acknowledgments
	References


