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Approximation models (or surrogate models) provide an efficient substitute to expen-
sive physical simulations and an efficient solution to the lack of physical models of system
behavior. However, it is challenging to quantify the accuracy and reliability of such ap-
proximation models in a region of interest or the overall domain without additional system
evaluations. Standard error measures, such as the mean squared error, the cross-validation
error, and the Akaikes information criterion, provide limited (often inadequate) informa-
tion regarding the accuracy of the final surrogate. This paper introduces a novel and model
independent concept to quantify the level of errors in the function value estimated by the
final surrogate in any given region of the design domain. This method is called the Re-
gional Error Estimation of Surrogate (REES). Assuming the full set of available sample
points to be fixed, intermediate surrogates are iteratively constructed over a sample set
comprising all samples outside the region of interest and heuristic subsets of samples inside
the region of interest (i.e., intermediate training points). The intermediate surrogate is
tested over the remaining sample points inside the region of interest (i.e., intermediate test
points). The fraction of sample points inside region of interest, which are used as interme-
diate training points, is fixed at each iteration, with the total number of iterations being
pre-specified. The estimated median and maximum relative errors within the region of in-
terest for the heuristic subsets at each iteration are used to fit a distribution of the median
and maximum error, respectively. The estimated statistical mode of the median and the
maximum error, and the absolute maximum error are then represented as functions of the
density of intermediate training points, using regression models. The regression models
are then used to predict the expected median and maximum regional errors when all the
sample points are used as training points. Standard test functions and a wind farm power
generation problem are used to illustrate the effectiveness and the utility of such a regional
error quantification method.
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I. Introduction

A. Approximation Models

Mathematical approximation models are commonly used for providing a tractable and inexpensive approxi-
mation of the actual system behavior in many routine engineering analysis and design activities, e.g., domain
exploration, sensitivity analysis, development of empirical models, and optimization. One of the most pop-
ular classes of approximation models are surrogate models or metamodels,1 which are purely mathematical
models, i.e., they are not based on the physics of the system. Major surrogate modeling methods include
Polynomial Response Surfaces,2 Kriging,3, 4 Moving Least Square,5, 6 Radial Basis Functions (RBF),7 Neural
Networks,8 and hybrid surrogate modeling.9, 10 These methods have been applied to a wide range of disci-
plines, such as aerospace design, automotive design, chemistry, and material science.11 The four main steps
typically involved in constructing a surrogate model are:

1. Choosing an appropriate method for performing the design of experiments (DoE);

2. Evaluating the system behavior from high fidelity simulations or physical experiments;

3. Identifying the appropriate surrogate model and training it using the system evaluations obtained in
the previous step; and

4. Validating the performance of the surrogate to ensure reasonable accuracy (prior to actual application).

In the fourth step, specialized error measures can be used to assess the accuracy of the surrogate esti-
mation. The utility of the knowledge of the local and global accuracy of a surrogate goes beyond validation
of the surrogate for application. Such knowledge can be crucial (i) for domain exploration, (ii) for further
improvement of the surrogate using direct or sequential sampling (adaptive sampling12 or active learning13),
(iii) for assessing the reliability (and updating) of the optimal design obtained through surrogate based opti-
mization,14, 15 and (iv) for quantifying the uncertainty (and user confidence) associated with the surrogate.
Other possible applications include surrogate model selection, and the construction of weighted surrogate
model and conservative surrogate model. These applications generally demand a reliable measure of the
local and regional accuracy of surrogates. However, the current state of the art in surrogate modeling and
application either provides limited information regarding the local and regional accuracy of surrogates or re-
quires additional (expensive) system evaluations, and is often model-dependent. In this paper, we introduce
a novel concept towards quantifying the level of surrogate errors in any given region of the design domain,
without requiring any additional system evaluations. This concept is also model independent and seeks to
be universal in application. In the following subsection, the popular methods for assessing the accuracy of
surrogates are briefly reviewed.

B. Modeling Errors: Quantification and Impact

Error quantification methods can be broadly classified, based on their computational expense, into: (i) meth-
ods that require additional data, and (ii) methods that use existing data.16 The former can be significantly
expensive and might not be a practical option in a majority of applications. Error quantification methods
can also be classified into global and local error estimation methods.17 The performance of the surrogate
over the entire domain is evaluated by global error measures, while local or point-wise error measures provide
the surrogate accuracy in different locations of the design domain.

Popular approaches of global error measures include:9 (i) split sample, (ii) cross-validation, (iii) boot-
strapping, and (iv) Akaike’s information criterion (AIC). It should be noted that these techniques are model
independent. In split sample strategy, the sample data is divided into training and test data. The former
is used to construct a surrogate; and the latter is used to test the performance of the surrogate. The cross-
validation is a popular technique to estimate the error of a developed surrogate. In q-fold cross-validation
approach, the data set is split randomly into q (approximately) equal subsets. The surrogate is constructed
q times, each time leaving out one of the subsets from training points. The omitted subset, at each iteration,
is used to evaluate the cross-validation error.18 A k -fold cross-validation approach is a variation of q-fold in
which all possible subset of size k are used to evaluate cross-validation error. In leave-one-out cross-validation
approach (k = 1), at each iteration, the training set is created by taking all sample points except one, and
the left out point is used for estimating the error between the surrogate prediction and the actual value.
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It should be noted that the cross-validation approach might provide information about the local accuracy
of the intermediate surrogate (which is constructed using subset of training points). The bootstrapping
approach generates m sub-samples from the sample points. Each sub-sample is a combination of all samples
with replacement. Different variants of the bootstrapping approach can be used for (i) model identification,
and (ii) identifying confidence intervals for surrogates.9 In Akaike’s original AIC, the performance of the
surrogate is predicted based on a penalized likelihood which is a negative log likelihood plus a penalty term,
which is given by

AIC = −2 logL(θ̂) + 2k (1)

In this equation, L(θ̂) is the maximized likelihood function, and k is the number of free parameters in the
model ,which is a measure of complexity or the compensation for the bias in the lack of fit when the maximum
likelihood estimators are used.19

Standard local error measures include: (i) the mean squared errors for Kriging,14 and (ii) the linear
reference model (LRM).20 In stochastic surrogate models like Kriging, the errors at two different points of
the design domain are not independent; and the correlation between the points is related to the distance
between them. When the distance between the two points is small, the correlation is close to one, and when
the distance is large, the correlation tends to zero. According to this correlation strategy, if the point x∗ is
close to sample points, the prediction confidence at that point is higher than when it is far away from all
the sample points. This concept is reflected in the local error measurement method for Kriging predictor
at the special point x∗. This error is equal to zero at the sample points and is equal to

√
σ2 at a point far

away from sample points, where σ2 is the approximation error variance in the stochastic process. The LRM
is a model independent method for quantifying the local performance of a surrogate. The LRM considers
the region with oscillations (complex behavior) as a high-error location. This method categorizes errors of a
surrogate in the design domain based on the deviation of the surrogate from the local linear interpolation.20

The mean squared error (MSE)(or root mean square error (RMSE)) which provides a global error measure
over the entire design domain. The RMSE at a large number of test points (NTest) is defined by:

RMSE =

√

√

√

√

1

NTest

NTest
∑

i=1

(yi − ŷi)2 (2)

where yi and ŷi are the actual and predicted values on ith test point, respectively. The RMSE provides
information about the actual accuracy of the surrogate, which requires additional system evaluations on test
points in the case of interpolating surrogates. The maximum absolute error (MAE) and relative absolute
error (RAE) are indicative of local deviations:

MAE = max
i=1,...,NTest

|yi − ŷi| (3)

RAEi = |yi − ŷi

yi
| (4)

The prediction sum of square (PRESS) is based on the leave-one-out cross-validation error:

PRESS =
1

N

N
∑

i=1

(ŷi − ŷ
(−i)
i ) (5)

where ŷi and ŷ
(−i)
i are the surrogate estimations at the ith training point, respectively predicted by the

surrogate constructed using all sample points and the surrogate constructed using all sample points except
the ith point.9

Meckesheimer et al.16 used the root mean square error of k -fold cross-validation (RMSECV) or root
mean square of PRESS (PRESSRMS) to measure the global accuracy of the surrogate over the entire design
domain:

RMSECV =

√

√

√

√

1

k

k
∑

i=1

(ŷi − ŷ
(−i)
i )2 (6)

where k is the number of omitted points. They studied the variations of k between 1 to 10; and for each k

values, the average of error measured on all of the combinations of selecting k points from all sample points
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are used to measure the global accuracy of surrogate. They also compared the error estimated with the
actual error approximated on additional test points to show the practicality of the RMSECV as a fidelity
characterizing method without using additional system evaluations.

Viana et al.21 applied the RMSECV approach as an criterion in surrogate model selection, and con-
structing a weighted average surrogate. They also showed that better results can be achieved using the
leave-one-out approach. Zhang et al.22 applied relative absolute error of cross-validation (RAECV) for char-
acterizing the uncertainty in the prediction of surrogate models. In this study, the normalized RAECV is
defined based on the leave-one-out approach as given by:

RAECVi
= | ŷi − ŷ

(−i)
i

ŷi
| (7)

II. Regional Error Estimation of Surrogates (REES)

A. Regional Error Estimation of Surrogates

The objective of the proposed approach is to provide a measure of the level of regional errors in an estimated
function without investing additional (expensive) system evaluations; this method is called the Regional
Error Estimation of Surrogate (REES). The REES method predicts the error level in any given region of
interest (based on the necessity of the user) by modeling the variation of the error with increasing density
of training points inside the region of interest. The size of the intermediate training data set is increased
in each step while the remaining sample points are used as test points to evaluate the error of the interme-
diate surrogate. The overall flowchart of the REES method is illustrated in Fig.1, and the major steps are
described below:

A.1 Generation of sample data
In this step, a set of experimental designs are selected based on a specified distribution. Then, the system
is evaluated over the selected test data points. The entire set of sample points is represented by {X}.

A.2 Identification of sample points inside/outside region of interest
The entire set of sample points are divided into inside and outside sets based on the user-defined region of
interest boundaries, and represented by {Xin} and {Xout}, respectively.

A.3 Estimation of the variation of the error with sample density
This step consists of an iterative process. The number of iteration (N it) is defined based on the dimension of
a problem, number of inside sample points, and the preference of the user. At each iteration, sample points
are divided into an intermediate training data set {XTR} and an intermediate test data set {XTE}

{XTR} = {Xout}+ {ßk} (8)

{XTE} = {X} − {XTR}
where, {ßti} ⊂ {Xin}
t = 1, 2, 3, ..., N it

where {ßk} represents a kth subset of inside-region sample points. At each iteration t, the size of {ßk} is
defined by nt and nt = s(t). The function s(t) returns an element of an ascending series, where s(t) ≤
s(t+ 1), ∀ t , and s(t = 1) ≥ 1.

At each iteration, the total number of sample combinations is defined by Kt where Kt ≤
(#{Xin}

nt

)

. The
term #{Xin} represents the number of inside-region sample points. In low dimensional problems, all possible
subsets of size nt are used, while in high dimensional problems a fraction of subsets are used due to the
computational cost. The intermediate surrogates fk, k = 1, 2, ...,Kt are constructed for all combinations
using the intermediate training points, and are tested over the intermediate test points. The median and
the maximum errors are then estimated for each combination as follows

Ek
med = Median(e1, e2, ..., emt) (9)

Ek
max = Max(e1, e2, ..., emt) (10)
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Generate a sample data set, {X}

Identify {Xin} and {Xout}

Choose number of iterations, N it

Set t = 1

Choose number of sample combinations, Kt

Set k = 1

Define a subset {ßk} of nt points.

where {ßk} ⊂ {Xin} and nt−1 < nt

Define intermediate training and test points,

{XTR} = {Xout}+ {ßk}

{XTE} = {X} − {XTR}

Construct an Intermediate Surrogate, fk

Estimate Ek

med
and Ek

max of fk

Check if k = Kt

Fit a distribution of the median and the maximum

errors over all Kt combinations

Determine Mot
med

, Motmax, and ABSt
max

Check if {ßt} ≡ {Xin}

k = k + 1t = t+ 1

Construct final surrogate using {X}

Train VESD regression functions using

Mot
med

, Motmax, and ABSt
max ∀t

Predict the level of the error in the final

surrogate within the region of interest

EMo

med
, EMo

max, and EABS
max

NO

NO

YES

YES

Figure 1. The framework for the Regional Error Estimation of Surrogate (REES) method
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where mt represents the number of test points in tth iteration; and e represents the RAE value estimated
on intermediate test points. Probabilistic models are developed using a lognormal distribution to represent
median and maximum errors estimated over all KT combinations at each iterations. It should be noted
that outliers are removed from median errors estimated at each iteration. The lognormal distribution is
selected because there is often orders of magnitude variation in the median error. It should be noted that
the lognormal distribution is more suitable where the data range is high, while in a narrow data range it
approximates to a normal distribution. The density function of a lognormal distribution is given by

f(x;µ, σ) =
1

x
√
2πσ2

e−
(ln x−µ)2

2σ2 (11)

where the σ2 and µ represents the shape and log-scale parameters of the distribution, respectively. The
mode of the median and maximum error distribution at each iteration (Motmed and Motmax) are evaluated as
a center of tendency, and are used to relate the variation of the surrogate error with sample density.

To illustrate the relation of the error with sample density, a two design variable benchmark problem
(Branin-Hoo function) is used. The size of sample data set, #{X}, is defined to be 550, and all of them are
selected as inside sample points (the region of interest is entire design space). The numerical settings of this
problem are defined as

#{Xin} = #{X}, nt = 5t, t = 1, 2, 3, ..., 100, (12)

and Kt = 400, ∀t

Based on this definition at the first iteration the intermediate surrogates are constructed using 5 sample
points, and tested on 545 points;

#{XTR} = 5, and #{XTE} = 545 (13)

In the same way at the last iteration;

#{XTR} = 500, and #{XTE} = 50 (14)

The relation of Motmed and Motmax with increasing sample density are illustrated in Figs. 2(a) and 2(b),
respectively. These figures illustrate that the errors decrease in a practically monotonic relation with in-
creasing training points, thereby illustrating the effectiveness of the proposed error measure.

0 100 200 300 400 500 600
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

M
o

m
e

d

Number of Training Points

(a) Estimated mode of median error

0 100 200 300 400 500 600
10

-6

10
-4

10
-2

10
0

10
2

M
o

m
a

x

Number of Training Points

(b) Estimated mode of maximum error

Figure 2. Relation of Error Estimated with Sample Density (Branin-Hoo Function with 2 design variables)

A.4 Prediction of regional error in the final surrogate
The final surrogate model is constructed using the full set of training data (sample data). Regression models
are applied to relate the Statistical Mode of the median error distribution(Momed), the statistical mode of
the maximum error distributions(Momax), and the absolute maximum error (ABStmax) at each iteration to
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the size of the inside-region training points, nt. These regression models, called the variation of error with
sample density (VESD), are expressed as

EMo
med = Fmed

(

nt
)

(15)

EMo
max = Fmax

(

nt
)

(16)

EABS
max = FABSmax

(

nt
)

(17)

The regression models are then used to predict the level of the error in the final surrogate within the region
of interest.

B. Modeling the Variation of Regional Error with Training Point Density

The selection of the type of regression function is critical to the modeling of the variation of regional error
with training point density. In this study, three types of the regression functions are used to represent the
variation of regional error with respect to the inside-region training points and they are

Type 1 Exponential regression model
F (x) = a0 ea1x (18)

Type 2 Multiplicative regression model
F (x) = a0 xa1 (19)

Type 3 Linear regression model
F (x) = a0 + a1 x (20)

where a0 and a1 are unknown coefficients to be determined. The choice of these functions assume a smooth
monotonic decrease of the regional error with the training point density within that region. In this paper, the
root mean squared error metric is used to select the best-fit regression model.

III. Application of the REES Method

The effectiveness of the REES method is explored for applications with Kriging, Radial Basis Functions
(RBF), Extended Radial Basis Functions (E-RBF), and Quadratic Response Surface (QRS). To evaluate
practical and numerical efficiencies of the REES method, four benchmark problems and an engineering
design problem are tested. The error evaluated using REES is compared with the actual error evaluated
using relative absolute error on additional test points (RAEactual). At the same time, the relative absolute
error given by leave-one-out cross-validation (RAECV) is also compared with RAEactual to illustrate the
potential greater effectiveness of the REES error metric over cross-validation error metrics.

A. Benchmark Problems

The performance of the proposed REES method is evaluated using the following analytical test problems:

Branin-Hoo function (2 variables)

f(x) =

(

x2 −
5.1x2

1

4π2
+

5x1

π
− 6

)2

+ (21)

10

(

1− 1

8π

)

cos(x1) + 10

where x1 ∈ [−5 10], x2 ∈ [0 15]

Hartmann functions (3 and 6 variables)

f(x) = −
4

∑

i=1

ci exp







−
n
∑

j=1

Aij (xj − Pij)
2







(22)

where x = (x1 x2 . . . xn) xi ∈ [0 1]
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In Hartmann-3, the number of variables, n = 3; the constants c, A, and P, are a 1× 4 vector, a 4× 3 matrix,
and a 4 × 3 matrix, respectively.10 In Hartmann-6, n = 6; the constants c, A, and P, are a 1 × 4 vector, a
4× 6 matrix, and a 4× 6 matrix, respectively.10

B. Wind Farm Power Generation

The effectiveness of the REES method for practical problems is illustrated using a wind farm power gen-
eration model, adopted from the Unrestricted Wind Farm Layout Optimization (UWFLO) framework.23, 24

Surrogates are developed using Kriging, RBF, E-RBF, and QRS to represent the power generation of an
array-like wind farm. It is assumed that turbines are arranged in a row-column pattern over the farm site.
Hence, the wind farm power generation can be represented as a function of the streamwise spacing and
spanwise spacing between turbines, with respect to the south direction (as shown in Fig. 3).

streamwise spacing
spanwise spacing

wind direction

Figure 3. Wind farm array schematic

The annual average power generation of a wind farm is a complex and expensive function of the turbine
features, the turbine arrangement (or farm layout), and the local wind resource variations. A surrogate
model offers a more tractable (and inexpensive) representation of the farm power generation in terms of key
design parameters. To train the surrogate model, the actual annual-average wind farm power generation is
estimated using an advanced power generation model developed by Chowdhury et al.23, 24 The reliability of
surrogate applications in wind farm design and analysis is subject to the accuracy of the surrogate in the
concerned parameter ranges.

The new REES method enables a unique quantification of the fidelity of the surrogate, thereby allowing
more informed decision-making in wind farm design and analysis (than possible with conventional surrogate
application). This case study is expected to illustrate the effectiveness of the REES method for a complex
practical engineering problem. In this case study, the surrogates are constructed to represent the power
generation of an array-like 100-turbine wind farm as a function of the streamwise spacing (xh) and the
spanwise spacing (xl) between turbines. The turbines are arranged in a 10×10 patterns in this case. The
bivariate normal distributions of wind data obtained for a site in North Dakota25 is used for this case study.
The lower and upper bounds of xh and xl, based on the wind turbine rotor diameter (D), are specified as

5D < xh < 30D

1.1D < xl < 10D

C. Numerical Settings

The numerical settings for the application of REES are provided in Table 1, which lists (i) the number
of input variables, (ii) the number of training points, (iii) the number of iterations, and (iv) the number
of inside-region training points based on the predefined region’s boundary. In these problems, the size of
inside-region training points at each iteration, t, is defined as

nt = ⌊#{Xin}
N itr + 1

t⌋ (23)
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where the function ⌊x⌋ returns the largest integer that is less than or equal to x. The Optimal Latin
Hypercube based on Translational Propagation algorithm26 is adopted to determine the locations of the full
set of sample points {X}, and additional test points for the benchmark problems. This design of experiments
method is accompanied by the modified maximum distance criterion.

Table 1. Numerical setup for test problems

Function
No. of Total No. of No. of No. of

variables sample points, {X} iteration, N it inside points, {Xin}

Branin-Hoo function 2 30 4 11

Hartmann-3 function 3 45 4 14

Hartmann-6 function 6 100 4 22

Wind farm power generation 2 30 4 30

To predict the level of the surrogates error in the entire domain in the wind farm power generation
problem, the region of interest is defined as equal to the design space ({X} = {Xin}). In this problem,
the size of the inside-region training points at each iteration is defined by the following ascending series;
nt = 21, 23, 25, 27.

D. Selection of Parameters

To implement the Kriging method, the DACE (design and analysis of computer experiments) package devel-
oped by Lophaven et al.27is used. The bounds on the correlation parameters in the nonlinear optimization
in Kriging, θl and θu are specified to be 0.1 and 20, respectively. Under the Kriging approach, the zero-order
polynomial function is used as a regression model. To implement the RBF, the multiquadric radial basis
function7 is used where the shape parameter is set to c = 0.9. In implementation of E-RBF,28 the shape
parameter is set to c = 0.9; the λ parameter is set to 4.75; and the order of monomial in non-radial basis
functions is fixed at 2.

E. Performance Criteria

The relative absolute error (RAE) evaluated on additional test points are used to evaluate the actual accuracy
of the final surrogate within the region of interest. This criterion is used to compare the performance of the
newly developed error estimation method, REES, and the relative absolute error of cross-validation, RAECV,
within the region of interest. The fractions of the errors evaluated using REES and RAECV with respect to
the actual error (RAECV) are represented by RREES and RRAECV , respectively.

RREES =
EREES

Momed

ERAE
med

(24)

RRAECV
=

ERAECV

med

ERAE
med

(25)

where EREES
Momed

represents the predicted mode of median errors in a surrogate; ERAE
med represents the median

of RAEs evaluated on test points; and ERAECV

med represents the median of relative absolute errors of cross-
validation, i.e.,

ERAE
med = median(RAEi), i = 1, 2, ...,#{Xtest} (26)

ERAECV

med = median(RAECVj
), j = 1, 2, ...,#{Xin} (27)

where the parameter #{Xtest} represents the number of test points. In this study, the total number of test
points used to calculate RAE is equal to 50 times of the number of inside-region sample points (50×#{Xin}).
The closer the fractions RREES and RRAECV are to one, the better the corresponding error measure.
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IV. Results and Discussion

A. Benchmark Problems

Figures 4-6 represent VESD regression models within the region of interest of surrogate models (Kriging,
RBF, E-RBF, and QRS) constructed for the three benchmark problems. The distributions of median errors,
and the mode of the median error distributions (Momed) are illustrated at each iteration. In Figs. 4-6 the
solid block circles represent the quantified mode of median errors at each iteration; the square represents the
predicted mode of median error in the final surrogate. It is observed that the modes of the error distributions
relatively decrease with increasing density of inside-region training points, as hypothesized. Based on these
observations, the variation of error with training point density can be modeled by applying the regression
models (exponential, multiplicative, and linear) described in Section I.B.

The type and coefficients of the VESD regression models fitted to the modes of median errors (Momed) of
surrogates in the benchmark problems are provided in Tables 2-4. The predicted median of errors (EREES

Momed
) in

the final surrogates can also be observed in these figures.Further numerical details of the results are provided
in Table 5.
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Figure 4. VESD model to predict EREES

Momed
in Branin-Hoo Function (with 2 design variables)

The VESD models used to predict the mode of maximum (EREES
Momax

) and the absolute maximum (EREES
ABSmax

)
error of surrogates for the three benchmark problems are illustrated in Figs. 7-9. The VESDmax and
VESDABS regression models are trained using mode of the maximum error distributions (Momax) and abso-
lute maximum error (ABSmax), respectively. It is observed that the modes of the maximum error distributions
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Figure 5. VESD model to predict EREES

Momed
in Hartmann Function (with 3 design variables)
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Figure 6. VESD model to predict EREES

Momed
in Hartmann Function (with 6 design variables)
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relatively decrease with increasing density of inside-region training points, as expected. While, in certain it-
erations the level of the absolute maximum error is higher than that in preceding iteration. This observation
can be primarily attributed to the outliers which are not eliminated in the modeling of the maximum error
distributions and evaluation of the absolute maximum error. The type and coefficients of the VESDmax and
VESDABS regression models for the three test problems are given in Tables 2-4.
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Figure 7. VESD model to predict EREES

Momax
and EREES

ABSmax
in Branin-Hoo Function (with 2 design variables)

The comparison of the performance of the REES error measure and the RAE given by leave-one-out
cross-validation (RAECV) with actual error evaluated on additional test point (RAEactual) are illustrated
through bar diagrams in Figs. 10-12. In these figures, the y-axis represents the normalized surrogate error
in the log scale. These comparisons are given for surrogates (Kriging, RBF, E-RBF, and QRS) constructed
for the three benchmark test problems.

In these figures the modes of the median and the maximum errors, and the absolute maximum errors
predicted using REES method are illustrated. Likewise, the median, the 75th percentile, the 95th percentile,
and the absolute maximum error estimated using RAECV and RAEactual are also presented. The mode of
the median error predicted using RESS method (EMoREES

med
), the median of the error estimated using RAECV

method (ERAECV

med ), and the median of the actual error evaluated using RAE method (ERAE
med ) are listed in

Table 5.
The performance criteria defined in Sec. III (R-values in Eqs. 25 and 25) is applied to compare the

performance of the REES method and RACV with actual error on predicting the median error of the final
surrogate. The comparison results are provided in Table 6. It is helpful to note that values closer to one are
desirable for these metrics. From Figs. 10-12 and Table 6, it is observed that the overall performance of the

13 of 21

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 S

ou
m

a 
C

ho
w

dh
ur

y 
on

 A
pr

il 
16

, 2
01

3 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
3-

17
51

 

 Copyright © 2013 by Achille Messac. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. 



-10 -5 0 5 10 15
0

1

2

3

4

5

6

7

8
M

a
x

o
f

R
A

E
s

Number of Inside-region Training Points

Momax

ABSmax

EREES

Momax

EREES

ABSmax

VESDmax

VESDABS

(a) Kriging

0 2 4 6 8 10 12 14
0

5

10

15

20

25

M
a

x
o

f
R

A
E

s

Number of Inside-region Training Points

Momax

ABSmax

EREES

Momax

EREES

ABSmax

VESDmax

VESDABS

(b) RBF

0 2 4 6 8 10 12 14
0

5

10

15

20

25

30

35

40

M
a

x
o

f
R

A
E

s

Number of Inside-region Training Points

Momax

ABSmax

EREES

Momax

EREES

ABSmax

VESDmax

VESDABS

(c) E-RBF

0 2 4 6 8 10 12 14
0

5

10

15

20

25
M

a
x

o
f

R
A

E
s

Number of Inside-region Training Points

Momax

ABSmax

EREES

Momax

EREES

ABSmax

VESDmax

VESDABS

(d) QRS

Figure 8. VESD model to predict EREES

Momax
and EREES

ABSmax
in Hartmann Function (with 3 design variables)

Table 2. VESD Coefficients for Branin-Hoo Function (with 2 design variables)

VESDmed VESDmax VESDABS

Surrogate VESD model a0 a1 VESD model a0 a1 VESD model a0 a1

Kriging Exponential 1.56 -0.19 Multiplicative 80.24 -2.02 Linear 62.52 -4.11

RBF Linear 0.56 -0.02 Multiplicative 55.82 -1.97 Multiplicative 44.18 -0.32

E-RBF Multiplicative 2.27 -1.31 Multiplicative 85.37 -2.33 Linear 61.17 -0.14

QRS Multiplicative 2.20 -0.50 Multiplicative 40.82 -1.16 Linear 103.03 -0.11
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Figure 9. VESD model to predict EREES

Momax
and EREES

ABSmax
in Hartmann Function (with 6 design variables)

Table 3. VESD Coefficients for Hartmann Function (with 3 design variables)

VESDmed VESDmax VESDABS

Surrogate VESD model a0 a1 VESD model a0 a1 VESD model a0 a1

Kriging Exponential 0.69 -0.04 Exponential 4.02 -0.12 Multiplicative 7.94 -0.18

RBF Exponential 0.95 -0.07 Exponential 13.85 -0.25 Exponential 24.28 -0.03

E-RBF Multiplicative 1.26 -0.25 Multiplicative 23.08 -1.05 Multiplicative 41.18 -0.25

QRS Linear 0.88 -0.03 Exponential 8.78 -0.18 Exponential 25.23 -0.06
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Table 4. VESD Coefficients for Hartmann Function (with 6 design variables)

VESDmed VESDmax VESDABS

Surrogate VESD model a0 a1 VESD model a0 a1 VESD model a0 a1

Kriging Exponential 1.69 -0.03 Exponential 8.94 -0.06 Multiplicative 22.38 -0.04

RBF Exponential 2.09 -0.04 Exponential 31.28 -0.11 Exponential 38.99 -0.02

E-RBF Exponential 3.01 -0.05 Exponential 56.47 -0.09 Linear 57.80 -0.27

QRS Multiplicative 4.42 -0.56 Exponential 15.40 -0.06 Linear 16.36 -0.21

REES method for surrogate error quantification is significantly better than that of the RAE estimated by
leave-one-out cross-validation.

Table 5. Median Error Estimated using REES, RAECV , and RAEactual

Kriging RBF E-RBF QRS

Function REES RAEcv RAEactual REES RAEcv RAEactual REES RAEcv RAEactual REES RAEcv RAEactual

Branin-Hoo 0.185 0.846 0.141 0.279 0.428 0.152 0.097 0.145 0.125 0.650 0.011 0.856

Hartmann-3 0.361 0.454 0.255 0.337 0.547 0.203 0.647 1.512 0.792 0.435 0.018 0.491

Hartmann-6 0.786 1.078 0.504 0.794 1.765 0.595 0.881 1.517 4.333 0.774 0.078 3.147

Wind farm problem 0.0016 0.0050 0.0032 .0054 0.0090 .0059 0.0049 0.0084 0.0050 0.0020 1.55e-6 0.0044

Table 6. Fraction of error evaluated using REES and RAECV over RAE

Kriging RBF E-RBF QRS

Function RREES RRAECV RREES RRAECV RREES RRAECV RREES RRAECV

Branin-Hoo 1.31 2.56 1.83 2.81 0.77 1.16 0.75 0.01

Hartmann-3 1.41 1.78 1.66 2.69 0.81 1.90 0.88 0.03

Hartmann-6 1.55 2.13 1.33 2.96 0.20 0.35 0.24 0.02

Wind farm problem 0.50 1.56 0.91 1.52 0.98 1.68 0.45 3.5e-4

B. Wind Farm Power Generation Problem

In this problem, the REES method is applied to explore the performance of different surrogates for the wind
farm power generation problem. The variation of error with sample density (VESD) within the entire design
space is illustrated in Fig. 13. The VESD regression models are trained using the statistical mode of the
median error distributions (Momed) at each step. Expectedly, it is observed that in the four surrogates,
the level of the statistical mode (Momed) decreases when increasing density of training points as desired. It
is also observed that, at each step the relative accuracy of the intermediate surrogates constructed using
Kriging and QRS is relatively higher than those given by RBF and E-RBF.

The predicted levels of errors in surrogates by REES and RAECV are shown in Figs. 14(a) and 14(b),
respectively. Figure 14(c) shows the actual error (RAEactual) in the wind farm power generation problem.
The comparison results based on the performance criteria (R-values), are also provided in Table 6. It is
observed that the REES method has relatively higher accuracy than RAECV in predicting levels of errors.
From Table 5, it is also observed that, Kriging has relatively higher accuracy in this problem based on the
REESs’ predicted errors and actual errors evaluated on test points. This observation shows that REES
can be effectively used as a model selection method to select the best surrogate for applications such as
optimization.
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Figure 10. Comparison of the performance of the REES and RAECV with RAEactual in Branin-Hoo Function
(with 2 design variables)
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Figure 11. Comparison of the performance of the REES and RAECV with RAEactual in Hartmann Function
(with 3 design variables)
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Figure 12. Comparison of the performance of the REES and RAECV with RAEactual in Hartmann Function
(with 6 design variables)
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Figure 13. VESD regression models in different surrogates for the wind farm power generation problem
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Figure 14. Comparison of the performance of the REES and RAECV with RAEactual in the wind farm power
generation problem

V. Conclusion

This paper develops a new approach to quantify the surrogate accuracy in any given region of the design
domain. Such an approach can be useful for informed decision-making when using surrogates for analysis
and optimization. This approach is based on the Regional Error Estimation in Surrogates method, which
is a model independent method for quantifying regional errors. Intermediate surrogates are iteratively
created with heuristic subsets of the available sample points and the remaining sample points are used to
evaluate the error in the estimated function. Regression models are then developed to represent the regional
error in the surrogate as functions of the training point densities inside and outside the region of interest.
These regression models are then used to predict the regional error levels for the final surrogate that is
trained using all available sample points. The effectiveness of the new regional error estimation method
for surrogates are illustrated using standard test problems and a wind farm power generation problem.
The application of REES to a standard test problems and practical engineering problem show that the
proposed method provides significantly better measure of surrogate error compared to relative absolute error
estimated by leave-one-out cross-validation. The preliminary results show that, a model selection based on
REES criterion can be more reliable than that using other error measures such as RAE given by cross-
validation. The future application of REES for model selection criterion will further establish the potentials
of this error quantification method.
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