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1. Abstract

The analysis of complex system behavior often demands expensive experiments or computational simula-
tions. Surrogate modeling techniques are often used to provide a tractable and inexpensive approximation
of such complex system behavior. Owing to the lack of any general guidelines regarding the suitability of
different surrogate models for different applications, model selection approach can be helpful to choose
the best surrogate technique. This paper investigates the effectiveness of a recently developed method for
surrogate error quantification called, Regional Error Estimation of Surrogate (REES), to select the best
surrogate model based on the level of accuracy. The REES method is developed based on the concept
that the accuracy of the approximation methods is related to the amount of available resources. In the
REES method, intermediate surrogates are iteratively constructed over heuristic subsets of the available
sample points (i.e., intermediate training points) and tested over the remaining available sample points
(i.e., intermediate test points). The statistical mode of the median and the maximum error distributions
are selected to represent the overall and maximum error at each iteration. The estimated modes of the
median and maximum error distributions are then represented as functions of the number of interme-
diate training points using a regression model. The regression models are used to predict the overall
and minimum accuracy of the final surrogate. These two error measures are then applied to select the
best surrogate. The proposed model selection technique is applied to select the best surrogate among
(i) Kriging, (ii) Radial Basis Functions (RBF), (iii) Extended Radial basis Functions (E-RBF), and (iv)
Quadratic Response Surface (QRS), for standard test functions and a wind farm power generation func-
tion. The REES-based model selection is compared with (i) model-selection based on cross-validation
errors and (ii) model-selection based on error estimated on a large set of additional test points; the lat-
ter is assumed to provide the correct model selection. The REES-based model selection is found to be
significantly more accurate than that based on cross-validation errors.
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3. Introduction
Engineering design problems often involve computationally intensive simulation models (high fidelity
models) or expensive experiment-based system evaluations. An accurate surrogate model is an effective
tool for providing a tractable and an inexpensive approximation of the actual system evaluation. Ma-
jor surrogate modeling methods include Polynomial Response Surfaces [1], Kriging [2, 3], Moving Least
Square [4, 5], Radial Basis Functions (RBF) [6], Neural Networks [7], and hybrid surrogate modeling
[8]. These methods have been applied to a wide range of disciplines, such as aerospace design, auto-
motive design, chemistry, and material science [9]. Since there is not unique surrogates suitable for all
applications, model selection techniques are used to select the best surrogate based on one or more error
measures among available candidate surrogates. In addition, the error measures can be applied as a
model parameter selection method (e.g., to find the best value for the shape parameter in RBF). Popular
error measures used as model selection criteria include [10]: (i) split sample, (ii) cross-validation, (iii)
bootstrapping, and (iv) Akaike’s information criterion (AIC) [11]. These error measures either provide
limited information regarding the accuracy of surrogates, or require additional system evaluations.

In this paper, we investigate the effectiveness of the REES error measurement method [12] in quantify-
ing the predictive ability of the surrogates. This method is model independent and seeks to be universal in



application. While in this paper we are seeking to apply the REES method as a model selection technique,
this method can also be applied as a model parameters selection method. In the following section, the
formulation of the REES error measurement method as a model selection approach is introduced in detail.

4. Model Selection based on REES

As a model selection criterion, the REES method is applied to provide information about the overall
accuracy of an estimated function without investing additional system evaluations. The REES method
predicts the error by modeling the variation of the error with an increasing density of training points.
The REES method is detailed in algorithm 1.

Algorithm 1 Model Selection based on REES

Suppose there are J candidates (or surrogates); indexed by j

INPUT:

Set Number of sample points N

Set Number of iterations N%; indexed by t

Set Size of intermediate training points at each iteration, ‘n, where 'n <+ n
Set Number of combinations at each iteration, K* where K* g(ﬁ); indexed by k

for all candidates, j =1,...,J do
X=Experimental Design(N)
F | X = Evaluate System (X)
(X} = (X0, )Y )
fort=1,...,N% do
fork=1,...,K!do
Choose {8} C {X}, where #{8} ='n
Define intermediate training points,{ X 7%} = {3}
Define intermediate test points,{ X7¥} = {X} — {8}
Construct intermediate surrogate Sy using { X%}
Estimate median and maximum errors;
E&wdiz7nedn”wem)m:1wq#{XTE}’E&mmizznumiem)m:1wq#{XTE}
end for
Fit distributions of the median and the maximum errors over all K* combinations

Determine the mode of the median and maximum error distributions; Mo}, and Mo

max
end for
Construct a final surrogate using { X'}
Train regression functions using Mo’ _, and Mo?, ..Vt

Predict the overall and maximum errors in the final surrogate (using regression models)
REESmaz
and E;
end for
return Best surrogate with the smallest EJREES’"” and/or EJREES’"”

. REESmeq
; Ej m

In this method, for each surrogate candidate, the intermediate surrogates are constructed iteratively
for all combinations of each iteration using the intermediate training points, and are tested over the
intermediate test points. The median and maximum errors are then estimated for each combination.
The median is applied since it is a useful measure of central tenancy which is less vulnerable to outliers.

k
Emaa: = max(em)m:L...,#{XTE}

tth

where #{XTF} represents the number of test points at iteration; and e represents the Relative



Absolute Error value estimated on intermediate test points.

em = RAEy; RAE,, = |£2—Ym, (1)
m
where v, and 7,, are the actual and predicted values on m'" intermediate test point, respectively.

The median and maximum errors estimated over all K* combinations are used to develop a probabilis-
tic model at each iterations. In this study, the lognormal distribution is selected because there is often
orders of magnitude variation in the median and maximum errors. The density function of a lognormal
distribution is given by . .

(n o —p)

: Y
flasn o) = ——c 2)
where the 02 and p represents the shape and log-scale parameters of the distribution, respectively. The
regression models are then applied to relate the statistical mode of the median and maximum error
distributions (Mo .4 and Mo}, ,.) to the number of the training points (‘n) at each iteration. These
regression models called the variation of error with sample density (VESD). This models are then used
to predict the overall and maximum errors of each surrogate candidate, and to select the best surrogate.

In this study, three types of the regression functions are applied

Type 1 Exponential regression model

F(z) = ag e™® (3)
Type 2 Multiplicative regression model
F(z) = ag o (4)
Type 3 Linear regression model
Flz)=ao+a1 x (5)

where a¢ and a; are unknown coefficients to be determined. The choice of these functions assume a
smooth monotonic decrease of the error with the training point density within that region. In this paper,
the root mean squared error metric is used to select the best-fit regression model.

5. Application of the Model Selection based on REES Method

The effectiveness of the model selection based on the REES method is explored to select the best surrogate
between all candidates including (i) Kriging, (ii) RBF, (iii) E-RBF, and (iv) Quadratic Response Surface
(QRS) on four benchmark problems and an engineering design problem. The results of the REES method
in selecting the best surrogate are compared with the model selection based on actual errors evaluated
using additional test points. In algorithm 2, the formulation of evaluating actual errors and using it
as a model selection criterion is given in detail. Here, the actual error is defined by the mode of error
distribution trained using errors evaluated on additional test points.

To illustrate the potential greater effectiveness of model selection based on the REES error measure-
ment over a prediction sum of square (PRESS), the normalized PRESS method based on the leave-one-out
cross-validation approach is defined in Algorithm 3.

To do a sensible comparison, the normalized Root Mean Square Error (RMSE) evaluated on additional
test points is used to evaluate the performance of PRESS in selecting the best surrogate among other
surrogate candidates.

N Test
1
EActualrmse — NTest Z (RAE1)2 (6)

i=1
5.1 Benchmark Problems

The performance of the model selection based on REES method is evaluated using the following analytical
test problems:

Branin-Hoo function (2 variables)

2 2
flz) = (3?2 - 541;21 45— 6) +10 (1 — &) cos(z1) + 10
where x € [-5 10], z2 €[0 15]



Algorithm 2 Model Selection based on the actual error on additional test points

Suppose there are J candidates (or surrogates); indexed by j
INPUT:
Set Number of additional test points /N5

for all candidates, j =1,...,J do
fori=1,..,N®* do
Estimate actual value on i*" test point; y; = System (x;)
Estimate predicted value on it test point; §; = Surrogate (x;)
Estimate RAE on *" test point; RAE; = %
end for .
end for
Fit a distribution to the errors (RAEs) evaluated on test points
Determine the mode of the error distribution; E;“Ct““l = mode(error distribution)

return Best surrogate surrogate with the smallest Ef‘c““‘l

Algorithm 3 Model Selection based on the normalized PRESS

Suppose there are J candidates (or surrogates); indexed by j
INPUT:
Set Number of training points IV

for all candidates, j =1,...,J do
fori=1,...,N do
Estimate predicted value on i*" point using a final surrogate; §; = Surrogate (x;)
Estimate predicted value on i*" point using an intermediate surrogate*; U, = Intermediate Sur-
rogate (x;)
Estimate RAE on i** point; RAECY =
end for
end for

Estimate the root mean square of the errors (RAEs), EJ #F55 = \/% Zf\il(RAEiCV)Q

return Best surrogate with the lowest EJP RESS

gi—i; |

*Intermediate surrogate is the surrogate constructed using all sample points except the it" point.




Hartmann function (6 design variables)
f@) ==l e eop{= X Ay (0 Py)*} (7)
where x=(x1 T2 ... xTn), x;€][0 1]

In Hartmann-6, n = 6; the constants c, A, and P, are a 1 x 4 vector, a 4 X 6 matrix, and a 4 x 6
matrix, respectively [8].

Dixon & Price functions (12 and 18 design variables))
f({E) = (xl — 1)2 + Z?:Qi (2%? — xi,l)

where x; € [-10 10], i=1,...,n
n =12 and 18

2

5.2 Wind Farm Power Generation
The effectiveness of model selection based on REES for engineering problems is illustrated using a wind
farm power generation model, adopted from the Unrestricted Wind Farm Layout Optimization (UWFLO)
framework [14, 15]. Surrogate candidates are developed using Kriging, RBF, E-RBF, and QRS to rep-
resent the power generation of an array-like wind farm. It is assumed that turbines are arranged in a
row-column pattern over the farm site. Hence, the wind farm power generation can be represented as
a function of the streamwise spacing and spanwise spacing between turbines, with respect to the south
direction (as shown in Fig. 1). The annual average power generation of a wind farm is a complex and
expensive function of the turbine features, the turbine arrangement (or farm layout), and the local wind
resource variations. A surrogate model offers a more tractable (and inexpensive) representation of the
farm power generation in terms of key design parameters. To train the surrogate model, the actual annual-
average wind farm power generation is estimated using an advanced power generation model developed by
Chowdhury et al. [14, 15]. The selection of the surrogate model among available surrogate candidates in
wind farm design and analysis is critical since further decision highly depends on the surrogate selection.
In this case study, surrogates are constructed to represent the power generation of an array-like 100-
turbine wind farm as a function of the streamwise spacing (xp) and the spanwise spacing (x;) between
turbines. The turbines are arranged in a 10x10 patterns in this case. The bivariate normal distributions
of wind data obtained for a site in North Dakota[16] is used for this case study. The lower and upper
bounds of x;, and xj, based on the wind turbine rotor diameter (D), are specified as

5D < xp, < 30D
1.1D < x; < 10D

Wd direction

AL

streamwise spacing’--
spanwise spacing

Figure 1: Wind farm array schematic

5.2 Numerical Settings
Numerical settings for the application of REES are provided in Table 1, which lists (z) the number



of variables, (i) the number of training points, (i7¢) the number of iterations, and (iv) the size of
training points at each iteration (as a function of iteration, t). The Optimal Latin Hypercube based
on Translational Propagation algorithm [17] is adopted to determine locations of the full set of sample
points {X}, and additional test points for the benchmark problems. This design of experiments method
is accompanied by the modified maximum distance criterion.

Table 1: Numerical setup for test problems

Function No. of No. of No. of No. of training
variables | sample points, N | iteration, N* | points at each iteration, 'n

Branin-Hoo function 2 32 4 2242t

Hartmann 6 100 5 8842t

Dixon & Price 12 240 5 22842t

Dixon & Price 18 400 6 386+2¢

Wind farm power generation 2 30 4 19+4-2¢

To implement the Kriging method, the DACE (design and analysis of computer experiments) package
developed by Lophaven et al. [18] is used. The bounds on the correlation parameters in the nonlinear
optimization in Kriging, 6, and 6, are specified to be 0.1 and 20, respectively.The zero-order polynomial
function is used as a regression model. To implement RBF, the multiquadric radial basis function [6] is
used where the shape parameter is set to ¢ = 0.9. In implementation of E-RBF [19], the shape parameter
is set to ¢ = 0.9; the A parameter is set to 4.75; and the order of monomial in non-radial basis functions
is fixed at 2.

6 Results and Discussion

In this study, the best surrogate is the most accurate model (based on the overall and/or minimum
accuracy) among all candidates over the entire design domain. To do model selection based on the
REES, the variation of error with sample density (VESD) regression models for all surrogate candidates
are constructed for all test problems. The VESD regression models used to predict the overall and
maximum errors in different surrogates for benchmark test problems are illustrated in Figs. 2 and 3,
respectively. These regression models for wind farm power generation problem are illustrated in Fig. 4.
The VESD models are trained using the statistical mode of the median and maximum error distributions
(Momea and Mop,ax) at each iteration in different surrogates (as explained in Algorithm 1). In Figs. 2
and 4(a) solid circles represent quantified mode of median errors at each iteration in different surrogates;
squares represent predicted overall error in different surrogates. Similarly, solid circles and squares in Figs.
3 and 4(b) represent quantified mode of maximum errors at each iteration and the predicted maximum
error in different surrogates.

Table 2 shows the results of the REES method in selecting the best surrogate among all candidates
for different test problems. Here, the overall error estimated using REES is applied to select the best
surrogate. In this table, the result of model selection based on the RESS is also compared with those
models selected based on the actual error evaluated on additional test points (explained in Algorithm 2).
It is observed that REES selects the best surrogate correctly. This observation shows that REES can be
effectively used as a model selection method to select the best surrogate for different application domains.
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Figure 4: Wind farm power generation

Table 2: Model selection based on the REES and mode of the actual errors evaluated on additional test

points (EActual)
REES EActual

Function Kriging | RBF | E-RBF | QRS || Kriging | RBF | E-RBF | QRS
Branin-Hoo X X
Hartmann-6 X X
Dixon & Price-12 X X
Dixon & Price-18 X X
Wind farm power generation X X

In Table 3, the results of model selection based on the normalized PRESS are compared with those
based on the mean of the normalized mean square error evaluated using a large number of test points. It
is observed that in most of the cases, the normalized PRESS could not select the best surrogate correctly.
Owing to the relative accuracy of the intermediate surrogates illustrated in Fig. 2 for all test problems;
the model selection based on the error evaluated in the last iteration should have the same output as the
model selection based on the REES. The issue with model selection based on PRESS is attributed to the
use of the mean to aggregate the errors evaluated using the leave-one-out approach, which makes PRESS
vulnerable to the outliers.

Table 3: Model selection based on the normalize PRESS and Root Mean Square Errors on additional
test points (EACtualRJWSE)

Normalized PRESS EActualramse
Function Kriging | RBF | E-RBF | QRS || Kriging | RBF | E-RBF | QRS
Branin-Hoo X X
Hartmann-6 X X
Dixon & Price-12 X X
Dixon & Price-18 X X
Wind farm power generation X X

In some applications (e.g., evaluating the maximum stress in structural analysis), we need to select the
best surrogate based on the maximum error evaluated in the entire domain. To do this end, the maximum
error estimated using REES (ER#FFSmas) is applied. Table 4 represents the results of model selection
based on the maximum error evaluated using REES; model selection based on the 75! percentile of the
leave one out cross validation errors evaluated by considering all combinations; model selection based on
75" percentile of the actual errors evaluated on a large number of test points. It is observed that, in the
majority of cases, the REES method selects the best surrogate based on the maximum error correctly.



Table 4: Model selection based on the maximum error evaluated using REES, 75" percentile of the actual

errors evaluated on test points, and 75" percentile of the leave one out cross validation (CV) errors

Maximum error based on REES 75" percentile of the CV errors || 757" percentile of the actual errors
Function Kriging | RBF | E-RBF | QRS || Kriging | RBF | E-RBF | QRS || Kriging | RBF | E-RBF | QRS
Branin-Hoo X X X
Hartmann-6 X X X
Dixon & Price-12 X X X
Dixon & Price-18 X X X
Wind farm power generation X X X

7 Conclusion

This paper presents a new model selection approach to select the best surrogate among available surrogate
models based on the level of accuracy. This approach investigates the effectiveness of a recently developed
error measure, Regional Error Estimation of Surrogate (REES). In the REES method, intermediate
surrogates are iteratively constructed with heuristic subsets of the available sample points, and remaining
points are used to evaluate the error of the estimated function. Regression models are then used to
represent the surrogate error as a function of the number of training points. This regression model
is used to predict the overall accuracy of the final surrogates, and to select the best surrogate model.
The effectiveness of the model selection based on the REES are illustrated using standard test problems
and a wind farm power generation problem. The results show that the proposed method selects the
best surrogate among all surrogate candidates with a higher level of confidence in comparison to the
normalized prediction sum of square (PRESS) estimated by the leave-one-out cross-validation approach.
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