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ABSTRACT
This paper significantly advanced the hybrid measure-

correlate-predict (MCP) methodology, enabling it to account for
the variations of both wind speed and direction. The advanced
hybrid MCP method used the recorded data of multiple reference
stations to estimate the long-term wind condition at the target
wind plant site with greater accuracy than possible with data
from a single reference station. The wind data was divided into
different sectors according to the wind direction, and the MCP
strategy was implemented for each wind sector separately. The
applicability of the proposed hybrid strategy was investigated
using four different MCP methods: (i) linear regression; (ii)
variance ratio; (iii) artificial neural networks; and (iv) support
vector regression. To implement the advanced hybrid MCP
methodology, we used the hourly averaged wind data recorded
at six stations in North Dakota between the years 2008 and
2010. The station Pillsbury was selected as the target plantsite.
The recorded data at the other five stations (Dazey, Galesbury,
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Hillsboro, Mayville, and Prosper) was used as reference station
data. The best hybrid MCP strategy from different MCP
algorithms and reference stations was investigated and selected
from the 1,024 combinations. The accuracy of the hybrid MCP
method was found to be highly sensitive to the combination of
individual MCP algorithms and reference stations used. It was
also observed that the best combination of MCP algorithms was
strongly influenced by the length of the correlation period.

Keywords: Measure-correlate-predict (MCP), power gen-
eration, resource assessment, wind distribution, wind energy

INTRODUCTION
Wind resource assessment is the process of estimating the

power potential of a wind plant site and has been playing an im-
portant role in a wind energy project. In general, wind resource
assessment includes (i) onsite wind conditions measurement; (ii)
correlations between onsite meteorological towers to fill in miss-
ing data; (iii) correlations between long-term weather stations
and short-term onsite meteorological towers; (iv) analysis of the
wind shear and its variations; (v) modeling of the distribution of
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wind conditions; and (vi) prediction of the available energy at
the site. MCP algorithms are used to predict the long-term wind
resource at target sites using the short-term (one- or two-year)
onsite data, and the co-occurring data at nearby meteorological
stations (that also have long-term data). The accuracy of long-
term predictions obtained using MCP methods is subject to (i)
the availability of a nearby meteorological station; (ii) the uncer-
tainty associated with a specific correlation methodology [1]; and
(iii) the likely dependence of this correlation on physicalfeatures
such as the topography, the distance between the monitoringsta-
tions, and the type of the local climate regime [2].

A wide variety of MCP techniques have been reported in
the literature, such as: (1) linear regression [3, 4]; (2) variance
ratio [4, 5]; (3) Weibull scale [5]; (4) artificial neural networks
(ANNs) [2, 3, 6]; (5) support vector regression (SVR) [7, 8];
(6) Mortimer [2]; and (7) wind index MCP [9]. MCP meth-
ods were first used to estimate the long-term annual mean wind
speed [10, 11]. Linear regression [12] was presented to charac-
terize the relationship between the reference and target site wind
speeds. Rogers et al. [13] compared four MCP algorithms: (i)a
linear regression model; (ii) a model using distributions of ratios
of wind speeds at the two sites; (iii) a vector regression method;
and (iv) a method based on the ratio of the standard deviations of
the two data sets. Perea et al. [4] proposed and evaluated three
MCP methods based on concurrent wind speed time series for
two sites: (i) linear regression derived from bivariate normal joint
distribution; (ii) Weibull regression; and (iii) approaches based
on conditional probability density functions.

Given the unavoidable practical constraints, the overall relia-
bility of the predicted long-term wind distribution remains highly
sensitive to the one-year distribution of recorded on-sitedata.
Quantifying and modeling the uncertainty in the MCP methods
would provide more credibility to wind resource assessmentand
wind plant performance estimation. Kwon [14] and Lackner et
al. [15] presented different frameworks to analyze uncertainty
in MCP-based wind resource assessment. The wind resource-
based uncertainty models proposed by Messac et al. [16] can be
applied also to the long-term data recorded at meteorological sta-
tions when MCP methods are used.

Research Objectives and Motivation
The hybrid MCP method recently developed by Zhang et al.

[17] combines the component MCP algorithms by characterizing
the distance and elevation difference between reference stations
and the target wind plant site. The overall objective of thispaper
is to significantly advance the original hybrid MCP methodology
by:

1. Considering both the wind speed and direction as the com-
ponents of the hybrid MCP methodology; and

2. Investigating the best combination of different MCP meth-
ods and reference stations.

The advancements to the hybrid MCP method is presented
in the next section. The application of the advanced hybrid MCP
method and the corresponding results and discussion are pre-
sented in Section III. Section IV presents the concluding remarks
of this research.

ADVANCING THE HYBRID MCP METHOD
A brief overview of the original hybrid MCP methodology is

first presented, followed by the description of the advancements
introduced in this paper.

Overview of the Original Hybrid MCP Method
The hybrid MCP method developed by Zhang et al. [17] cor-

relates the wind data at the targeted wind plant site with that at
multiple reference stations. The strategy accounts for thelocal
climate and the topography information. In the original hybrid
MCP method, all component MCP estimations between the tar-
geted wind plant site and each reference station use a singleMCP
method (e.g., linear regression, variance ratio, Weibull scale, or
neural networks).

The weight of each reference station in the hybrid strategy
is determined based on: (i) the distance and (ii) the elevation dif-
ferences between the target wind plant site and each reference
station. The hypothesis here is that the weight of a reference
station is larger when the reference station is closer (shorter dis-
tance and smaller elevation difference) to the target wind plant
site. The weight of each reference station,wi , is determined by

wi =
1

2(nre f −1)

(

∑
nre f
j=1, j 6=i ∆d j

∑
nre f
j=1∆d j

+
∑

nre f
j=1, j 6=i ∆h j

∑
nre f
j=1 ∆h j

)

(1)

wherenre f is the number of reference stations; and∆d j and∆h j

represent the distance and the elevation difference between the
target plant site andjth reference station, respectively.

In the following subsections, we briefly discuss how this pa-
per advances the key components of the original hybrid MCP
method. These advanced features provide helpful flexibility to
the hybrid MCP method, and extends its applicability to design-
ing full-scale commercial wind plants.

Modeling the Impact of Wind Direction on the Hybrid
MCP Performance

Each wind data point was allocated to a bin according to the
wind direction sector measurement at the target wind plant site.
In this paper, we investigated four cases by choosing to bin into
different number of sectors: (i) 4 sectors; (ii) 8 sectors; (iii) 16
sectors; and (iv) 32 sectors. At the multiple reference stations,
the concurrent wind speed and direction measurement was allo-
cated to the corresponding bin. Within each sector, the long-term
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wind speed was predicted by applying the hybrid MCP strategy
based on the concurrent short-term wind speed data within that
sector. A wind rose is a graphical tool used by meteorologists to
provide a succinct illustration of how wind speed and wind di-
rection are distributed at a location. Figure 1 shows a wind rose
diagram with 16 direction sectors.

By putting the wind speed data in each sector together, we
obtained the set of long-term wind data at the target wind plant
site. The quality of the predicted long-term wind data was eval-
uated using the performance metrics described in the following
subsection.
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Figure 1. WIND ROSE DIAGRAM WITH 16 SECTORS

Performance Metrics for Evaluating the MCP Method
Three sets of performance metrics were proposed to evalu-

ate the performance of the MCP methods: (i) statistical metrics;
(ii) wind distribution metrics; and (iii) wind plant performance:
power generation and capacity factor metrics.

Statistical Metrics Mean long-term wind speed is often
used to characterize the potential of a wind plant site. It isan im-
portant measure of wind power potential. Four metrics are eval-
uated based on the estimated wind speeds by MCP methods and
the reference wind speeds: (i) the ratio of mean wind speeds [13];
(ii) the ratio of wind speed variances; (iii) root mean squared er-
ror (RMSE) [18]; and (iv) maximum absolute error (MAE).

The ratio of mean wind speeds,Rµ, is expressed as

Rµ =
1/nt ∑nt

i=1 ṽ(tk)

1/nt ∑nt
i=1v(tk)

(2)

wherev(tk) represents the measured hourly averaged wind speed
at timetk at the targeted wind plant site, ˜v(tk) is the correspond-
ing estimated wind speed value, andnt is the total number of
paired data points used in the analysis.

The ratio of wind speed variances,Rσ2, is expressed as

Rσ2 =
1/nt ∑nt

i=1

(

ṽ(tk)− µ̃
)2

1/nt ∑nt
i=1 (v(t

k)−µ)2
(3)

whereµ̃ andµ represent the mean of the estimated and measured
wind speeds of all test paired data points.

The RMSE is given by

RMSE=

√

1
nt

nt

∑
k=1

(v(tk)− ṽ(tk))
2 (4)

The MAE is expressed as

MAE= max
k

∣

∣

∣
v(tk)− ṽ(tk)

∣

∣

∣
(5)

Wind Distribution Metrics Wind speed distributions
are necessary to quantify the available energy (power density) at
a site and to design optimal wind plant configurations. The Mul-
tivariate and Multimodal Wind Distribution (MMWD) model
[19, 20] can capture the joint variation of wind speed, wind di-
rection, and air density, and also allows representation ofmulti-
modally distributed data.

The MMWD model was developed based on theKernel
Density Estimation(KDE) [19, 20]. For ad− variate random
sampleU1,U2, · · · ,Un drawn from a densityf , the multivariate
KDE is defined as

f̂ (u;H) = n−1
n

∑
i=1

KH (u−Ui) (6)

whereu = (u1,u2, · · · ,ud)
T andUi = (Ui1,Ui2, · · · ,Uid)

T , i =
1,2, · · · ,n. Here,K(u) is the kernel that is a symmetric probabil-
ity density function;H is the bandwidth matrix, which is sym-
metric and positive-definite; andKH(u) = |H|−1/2K(H−1/2u).
The choice ofK is not crucial to the accuracy of kernel den-
sity estimators [21]. In this paper,K(u) = (2π)−d/2exp

(

− 1
2uTu

)

is considered, the standard normal throughout. In contrast, the
choice ofH is crucial in determining the performance off̂ [22].
In the MMWD model, an optimality criterion, theasymptotic
mean integrated squared error[22], is used to select the band-
width matrix. The details of the MMWD model can be found in
Ref. [19].
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Wind Plant Performance Metrics This power gener-
ation model was adopted from Chowdhury et al. [23, 24]. The
power generated by a wind plant is an intricate function of the
configuration and location of the individual wind turbines.The
flow pattern inside a wind plant is complex, primarily because
of the wake effects and the highly turbulent flow. The power
generated by a wind plant (Pplant) consisting ofN wind turbines
is evaluated as a sum of the powers generated by the individual
turbines, which is expressed as [23]

Pplant =
N

∑
j=1

Pj (7)

Accordingly, the wind plant efficiency can be expressed as

ηplant =
Pplant

∑N
j=1P0 j

(8)

whereP0 j is the power thatturbine− j would generate if operat-
ing as a stand-alone entity, for the given incoming wind velocity.
Detailed formulation of the power generation model can be found
in the papers [23,24].

The power generated by a wind plant with nine turbines was
evaluated in this paper. Two types of wind turbines were se-
lected: (i) theGE 1.5-MW-XLE[25] and (ii) theGE 2.5-MW-
XL [26].

CASE STUDY: ASSESSING THE WIND RESOURCE PO-
TENTIAL AT A WIND PLANT SITE

To implement the advanced hybrid MCP methodology, we
used the hourly averaged wind data recorded at six stations in
North Dakota between 2008 and 2010. The station Pillsbury was
selected as the target wind plant site. The recorded data at the
other five stations (Dazey, Galesbury, Hillsboro, Mayville, and
Prosper) was used as reference station data. The station locations
were shown in Fig. 2; the six stations inside the outer rectangle
were used in this paper.

The wind data is obtained from the North Dakota Agricul-
tural Weather Network (NDAWN) [27]. Table 1 shows the ge-
ographical coordinates and elevation of each station. The mea-
surement information is listed as follows.

1. Wind speed is measured at 3 meters above the soil surface
with an anemometer.

2. Wind direction is the direction from which wind is blowing
(degrees clockwise from north) measured at 3 meters above
the soil surface (N = 0◦;NE= 45◦;E = 90◦;SE= 135◦;S=
180◦;SW= 225◦;W = 270◦;NW = 315◦;etc.) with a wind
vane. The value is the average of all measured wind direc-
tions for a 24-hour period from midnight to midnight.

Figure 2. NDAWN STATION LOCATIONS [27]

Table 1. DETAILS OF NDAWN STATIONS [27]

Station Latitude Longitude Elevation (m)

Dazey 47.183 -98.138 439

Galesburg 47.210 -97.431 331

Hillsboro 47.353 -96.922 270

Mayville 47.498 -97.262 290

Pillsbury 47.225 -97.791 392

Prosper 47.002 -97.115 284

Component MCP Methods
In this research, four MCP methods were investigated: (i)

linear regression; (ii) variance ratio; (iii) ANNs; and (iv) SVR.
It is helpful to note that other MCP methods can also be used in
conjunction with the hybrid strategy, because the weights deter-
mination strategy is independent with the MCP method.

The Linear Regression Method Linear regression is
a common method to characterize the relationship between the
reference and target site wind speeds. The prediction equation is
given as

ŷ= ax+b (9)

whereŷ is the predicted wind speed at the target site;x is the
observed wind speed at the reference site; anda andb are the
estimated intercept and slope of the linear relationship.

The Variance Ratio Method When using linear regres-
sion, the predicted mean wind speed at the target site will be
close in value to the measured mean during the training interval.
However, the predicted variance at the target site will be less than
the measured variance. This can result in biased predictions of
wind speed distributions.

4 Copyright c© 2013 by ASME



The variance ratio method was proposed in response to the
above limitations of linear regression. It involves forcing the
variance of the predicted wind speed at the target site to be equal
to the measured variance at the target site. The prediction equa-
tion is express as

ŷ= µy−
σy

σx
µx+

σy

σx
x (10)

whereµx, µy, σx andσy are the means and standard deviations of
the two concurrent data sets.

The ANNs Method ANNs have been used to correlate
and predict wind conditions because of their ability to recognize
patterns in noisy or otherwise complex data. A neural network
generally contains an input layer, one or more hidden layers, and
an output layer. An ANN is developed by defining the following
parameters:

1. The interconnection pattern between different layers ofneu-
rons;

2. The learning process for updating the weights of the inter-
connections; and

3. The activation function that converts a neuron’s weighted
input to its output activation.

The SVR Method SVR has gained popularity, both
within the statistical learning community [28, 29] and within
the engineering optimization community [30–32]. The SVR ap-
proach provides a unique way to construct smooth, nonlinear,
regression approximations by formulating the surrogate model
construction problem as a quadratic programming problem. The
SVR approach can be expressed as [33]

f̃ (x) = 〈w,Φ(x)〉+b (11)

where〈·, ·〉 denotes the dot product;w is a set of coefficients to
be determined; andΦ(x) is a map from the input space to the fea-
ture space. To solve the coefficients, we can allow a predefined
maximum tolerated errorε (with respect to the actual function
value) at each data point, given by [33]

| f̃ (xi)− f (xi)| ≤ ε (12)

where f (x) is the actual function to be approximated. The flat-
ness of the approximated function can be characterized byw. By
including slack variablesξ to the constraint and a cost function,

the coefficientw can be obtained by solving a quadratic program-
ming problem given by [33]

min
w,ξ,ξ∗

1
2
‖w‖2+C

np

∑
i=1

(ξi + xi∗i )

subject to f (xi)− f̃ (xi)≤ ε+ ξi

f (xi)− f̃ (xi)≤ ε+ ξ∗i
ξi ,ξ∗i ≥ 0

(13)

wherenp is the number of sample points. The parameterC> 0 is
user-specified and represents the trade-off between flatness and
the amount up to which errors larger thanε are tolerated. The
above formulation is the primal form of the quadratic program-
ming problem. In most cases, the dual form with fewer con-
straints is easier to solve, and is widely used to define the final
form of the approximation. It can be shown that the dual form
is convex and therefore has a unique minimum. Typical allowed
mapping functions are radial basis functions, such as the gaus-
sian function.

Selection of Parameters
The MATLAB Neural Network Toolbox [34] was used in

this paper. The Levenberg-Marquardt algorithm was selected for
neural network training. Eighty percent data points were ran-
domly selected as training points; and 20 percent points were
used to validate the network. The MSE metric was used to eval-
uate the performance of the developed neural network. For the
SVR method, we used an efficient SVM package, LIBSVM (A
Library for Support Vector Machines), developed by Chang and
Lin [35].

Results and Discussion
Two scenarios were analyzed in the case study. In the first,

the hybrid MCP strategy was implemented without binning wind
data points to different sectors. The objective of the first scenario
was to investigate the performance of the hybrid MCP method
with mixing combinations of MCP algorithms and reference sta-
tions. In the second scenario, we evaluated the hybrid MCP per-
formance, including consideration of both wind speed and di-
rection. However, this paper discussed wind direction primarily
related to the prediction of wind speed. The prediction of the
long-term wind direction at the target wind plant site was not
within the scope of this paper.

Scenario I: Hybrid MCP Methods with Mixing Com-
binations A preliminary comparison of the hybrid MCP
method (using multiple reference stations) with the individual
MCP method (using one reference station) was investigated in
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the paper by Zhang et al. [17]. However, the hybrid MCP meth-
ods discussed in Ref. [17] used a single MCP technique for all
five reference stations, which might not be optimal. Each refer-
ence station has the flexibility to use any of the available MCP
techniques. In this case study, the same five stations were se-
lected as reference stations. In addition, each station canbe com-
bined into the hybrid MCP method with one of the four follow-
ing MCP algorithms: (i) linear regression; (ii) variance ratio; (iii)
neural network; and (iv) SVR. Therefore, a total of 1,024 (which
is equal to 45) combinations were investigated to formulate the
hybrid MCP strategy.

Figs. 3-5 illustrate the three sets of performance metrics.
Each line in the figures represents one specific combination of
stations and MCP algorithms. It was observed that the perfor-
mance of the hybrid MCP technique varied significantly. For
instance, the average value of RMSE during the length of cor-
relation period (Fig. 3(c)) varied 4.91% during the 1,024 hybrid
MCP models.

The smaller the RMSE value, the more accurate the esti-
mated wind pattern. Based on the RMSE values, we found
the best combination of MCP algorithms and reference stations,
shown in Table 2. In the table, “Ratio,” “Linear,” “ANN,” and
“SVR” represent variance ratio, linear regression, artificial neu-
ral networks, and support vector regression, respectively. Four
combinations were observed based on the length of the corre-
lation period. It was shown from Table 2 that: (i) the variance
ratio algorithm was chosen at the Dazey, Mayville, and Prosper
reference stations for all four correlation periods; (ii) the SVR al-
gorithm was selected at the Galesbury reference station when the
correlation period was between 3,500-11,500 hours; and (iii) at
the Hillsboro reference station, different MCP algorithmswere
selected based on the length of the correlation period.

The two-parameter Weibull distribution was the most widely
accepted distribution for wind speed. The shape parameter (k)
and the scale parameter (c) determine the probability distribution.
In this research, the ratios ofk̃ (and c̃) for the predicted wind
speeds tok (andc) for the observed targeted wind speeds,Rk and
Rc, were evaluated. The values ofRk andRc are given by

Rk =
k̃
k
, and Rc =

c̃
c

(14)

Figure 4 shows the normalized Weibullk andc parameters
for the total 1,024 combinations. The closer the value of theratio
is to one, the more accurate the estimated long-term wind condi-
tion. The average values ofRk andRc varied 1.94% and 15.82%,
respectively, throughout the 1,024 different combinations. The
above observation indicates that the scale parameter (c) is more
sensitive to the MCP strategies than the shape parameter (k).

The power generation of the nine-turbine wind plant is
shown in Fig. 5. Figs. 5(a) and 5(b) show the 1,024 wind

power generations of wind plants with 1.5-MW and 2.5-MW tur-
bines, respectively. It was observed that: (i) the average value
of the power generation with GE 1.5MW-XLE turbines during
the length of correlation period (Fig. 5(a)) varied 5.57% during
the 1,024 hybrid MCP models; and (ii) the average value of the
power generation with GE 2.5MW-XL turbines during the length
of correlation period (Fig. 5(b)) varied 4.81% during the 1,024
hybrid MCP models.

Scenario II: Hybrid MCP Methods Considering
Wind Speed and Direction Each wind data point was al-
located to a bin according to the wind direction sector measure-
ment at the target plant site (Pillsbury station). In the case study,
four cases were investigated: (i) 4 sectors; (ii) 8 sectors;(iii)
16 sectors; and (iv) 32 sectors. For the five reference stations
(Dazey, Galesbury, Hillsboro, Mayville, and Prosper), thecon-
current wind speed and direction measurement was allocatedto
the corresponding bin. Within each sector, the long-term wind
speed was predicted by applying the hybrid MCP strategy based
on concurrent short-term wind speed data within that sector. In
Scenario II, the hybrid MCP strategy used a single MCP tech-
nique for all five reference stations.

Figure 6 shows the ratio of mean wind speeds with the four
different direction sectors. The closer the value of the ratio is to
one, the more accurate the estimated wind pattern. It was ob-
served that: (i) the hybrid MCP methods performed relatively
better than the the individual MCP algorithms; (ii) the hybrid
SVR algorithm performed relatively worse than the other three
hybrid MCP methods; (iii) the hybrid linear regression, thehy-
brid variance ratio, and the hybrid neural network methods per-
formed best when the correlation period was between 5,500-
8,500 hours (approx. 8 to 12 months).

Figure 7 shows the wind speed distributions with the four
different direction sectors. The closer the predicted distribution
curve is to the actual distribution curve (the black line in the fig-
ure), the more accurate the estimated wind pattern. It was ob-
served that: (i) for 8, 16, and 32 direction sectors, the hybrid vari-
ance ratio method (solid blue line) agreed more with the actual
distribution curve (solid black line) than other MCP methods;
(ii) for 4 direction sectors, the individual variance ratiomethod
(dashed blue line) agreed more with the actual distributioncurve.

Figure 8 shows the wind power generation of the wind plant
with nine GE 1.5MW-XLE turbines. The closer the predicted
power generation curve to the actual power generation curve(the
black line in the figure), the more accurate the estimated wind
pattern. The predicted power generation of the wind plant was
estimated using the long-term wind data predicted by the hybrid
MCP method; the actual wind plant power generation was es-
timated using the measured long-term wind data. We observed
that: (i) the hybrid variance ratio method performed best when
the correlation period was between 2,000-3,500 hours (approxi-
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Table 2. BEST COMBINATION OF MCP ALGORITHMS AND REFERENCE STATIONS

Station 2,000-3,500 (hours) 3,500-5,500 (hours) 5,500-8,500 (hours) 8,500-11,500 (hours)

Dazey Ratio Ratio Ratio Ratio

Galesburg Ratio SVR SVR SVR

Hillsboro Linear Linear ANN SVR

Mayville Ratio Ratio Ratio Ratio

Prosper Ratio Ratio Ratio Ratio
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Figure 3. Statistical performance metrics to evaluate the hybrid MCP with 1,024 combinations
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Figure 4. WIND DISTRIBUTION METRICS TO EVALUATE THE HYBRID MCP WITH 1,024 COMBINATIONS
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Figure 5. POWER GENERATION METRICS TO EVALUATE THE HYBRID MCP WITH 1,024 COMBINATIONS

mately 2.5 to 5 months) for all four direction sectors; (ii) the lin-
ear regression and the neural network methods had relatively bet-
ter power generation estimations when the correlation period was
between 6,000-9,000 hours (approximately 8.5 to 12.5 months);
(iii) the power generation was generally overestimated by the
neural network, hybrid neural network, linear regression,hybrid
linear regression, and hybrid variance ratio methods; and (iv) the
power generation was generally under-estimated by the SVR,hy-
brid SVR, and variance ratio methods.

CONCLUSION

This paper developed an advanced hybrid MCP methodol-
ogy that accounts for the variations of both wind speed and di-
rection. The advanced hybrid MCP method uses the recorded
data of multiple reference stations to estimate the long-term wind
condition at a target plant site. Two scenarios were analyzed us-
ing the hybrid MCP methodology, and interesting results were
observed and discussed.

Because each reference station has the flexibility to use any
of the available MCP techniques, the multiple reference weather

8 Copyright c© 2013 by ASME
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Figure 6. THE RATIO OF MEAN WIND SPEEDS WITH DIFFERENT DIRECTION SECTORS

stations were combined into the hybrid MCP strategy with the
best suitable MCP algorithm for each reference station. In the
first scenario, each reference weather station used one of the fol-
lowing MCP algorithms: (i) linear regression; (ii) variance ratio;
(iii) neural network; and (iv) support vector regression. There-
fore, a total of 1,024 (which is equal to 45) combinations were in-
vestigated to formulate the hybrid MCP strategy. The best hybrid
MCP strategy of MCP algorithms and reference station combi-
nation was determined and analyzed. We found that the accuracy
of the hybrid MCP method was highly sensitive to the combina-
tion of individual MCP algorithms and reference stations. We
also found that the best hybrid MCP strategy varied based on the
length of the correlation period.

In the second scenario, both wind speed and direction were
considered in the application of the hybrid MCP strategy. We
found that the hybrid MCP methodology performed best when
the correlation period was between 5,500-8,500 hours (approxi-
mately 8 to 12 months) based on the ratio of mean wind speeds.
For the nine-turbine wind plant, the power generation was gen-
erally overestimated by the neural network, hybrid neural net-
work, linear regression, hybrid linear regression, and hybrid vari-
ance ratio methods; it was under estimated by the support vector
regression, hybrid support vector regression, and variance ratio
methods.

Quantifying and modeling the uncertainty in the MCP meth-
ods would provide more credibility to wind resource assessment

9 Copyright c© 2013 by ASME
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Figure 7. WIND DISTRIBUTION METRICS WITH DIFFERENT DIRECTION SECTORS

and wind plant performance estimation. Modeling the propaga-
tion of uncertainty through the MCP process would allow quan-
tification of the expected uncertainty in on-site wind conditions
and wind plant power generation. In addition, an investigation
of how the uncertainties in the annual distribution of wind con-
ditions interact with the uncertainties inherent in the MCPcor-
relation methodology is also necessary. This investigation is an
important topic for future research.
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