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ABSTRACT

This paper significantly advanced the hybrid measure-
correlate-predict (MCP) methodology, enabling it to acobfor
the variations of both wind speed and direction. The advence
hybrid MCP method used the recorded data of multiple refegen
stations to estimate the long-term wind condition at theyéar
wind plant site with greater accuracy than possible withadat
from a single reference station. The wind data was dividédl in
different sectors according to the wind direction, and thEmR/
strategy was implemented for each wind sector separatdig. T
applicability of the proposed hybrid strategy was investagl
using four different MCP methods: (i) linear regressioni) (i
variance ratio; (iii) artificial neural networks; and (iv)upport
vector regression. To implement the advanced hybrid MCP
methodology, we used the hourly averaged wind data recorded
at six stations in North Dakota between the years 2008 and
2010. The station Pillsbury was selected as the target pdaeat
The recorded data at the other five stations (Dazey, Galgsbur
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Hillsboro, Mayville, and Prosper) was used as referencdicta
data. The best hybrid MCP strategy from different MCP
algorithms and reference stations was investigated anecsed
from the 1,024 combinations. The accuracy of the hybrid MCP
method was found to be highly sensitive to the combination of
individual MCP algorithms and reference stations used. dsw
also observed that the best combination of MCP algorithms wa
strongly influenced by the length of the correlation period.

Keywords. Measure-correlate-predict (MCP), power gen-
eration, resource assessment, wind distribution, windggne

INTRODUCTION

Wind resource assessment is the process of estimating the
power potential of a wind plant site and has been playing an im
portant role in a wind energy project. In general, wind reseu
assessment includes (i) onsite wind conditions measureiign
correlations between onsite meteorological towers tafithiss-
ing data; (iii) correlations between long-term weathetictes
and short-term onsite meteorological towers; (iv) analgdithe
wind shear and its variations; (v) modeling of the distribatof
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wind conditions; and (vi) prediction of the available eneay The advancements to the hybrid MCP method is presented
the site. MCP algorithms are used to predict the long-termdwi  in the next section. The application of the advanced hybi@RV
resource at target sites using the short-term (one- or weaw)y method and the corresponding results and discussion are pre
onsite data, and the co-occurring data at nearby metedcalog  sented in Section Ill. Section IV presents the concludimgaeks
stations (that also have long-term data). The accuracyng-lo of this research.

term predictions obtained using MCP methods is subject)to (i

the availability of a nearby meteorological station; (figtuncer-

tainty associated with a specific correlation methodoldgygnd ADVANCING THE HYBRID MCP METHOD

(iii) the likely dependence of this correlation on physiegdtures A brief overview of the original hybrid MCP methodology is
such as the topography, the distance between the monitstang  first presented, followed by the description of the advarers
tions, and the type of the local climate regime [2]. introduced in this paper.

A wide variety of MCP techniques have been reported in
the literature, such as: (1) linear regression [3, 4]; (2)arece Overview of the Original Hybrid MCP Method

ratio [4, 5]; (3) Weibull scale [5]; (4) artificial _neural neorks The hybrid MCP method developed by Zhang et al. [17] cor-
(ANNS) [2, 3, 6]; (5) support vector regression (SVR) [7, 8 q|ates the wind data at the targeted wind plant site withaha

(6) Mortimer [2]; and (7) wind index MCP [9]. MCP meth- ., ,iinje reference stations. The strategy accounts fotdbal
ods were first used to estimate the long-term annual mean wind climate and the topography information. In the original figth

speed [10, 11]. Linear regression [12] was presented toachar MCP method, all component MCP estimations between the tar-
terize the relationship between the reference and targetvaid geted wind plz;mt site and each reference station use a iR
speeds. Rogers et al. [13] compared four MCP algorithms (i) method (e.g., linear regression, variance ratio, Weitnadles or
Iinea}r regression model; (ii)_a moq_el using distributio_ﬁsamios neural networks).

of W'r.]d speeds at the two sites; ('".) a vector regressmrh_me'k;t The weight of each reference station in the hybrid strategy
and (iv) a method based on the ratio of the standard deviatibn is determined based on: (i) the distance and (ii) the elewatif-

the two data sets. Perea et al. [4] proposed and evalua®el thr o o coq hetween the target wind plant site and each referen
MCP methods based on concurrent wind speed time series for i The hypothesis here is that the weight of a referenc
two sites: (i) linear regression derived from bivariatematjoint station is larger when the reference station is closer {ehdis-
distribution; (i) Weibull regression; and (iil) approaehbased tance and smaller elevation difference) to the target wiadtp

on cor_1d|t|onal proba_blhty densny functlons._ _ site. The weight of each reference statian,is determined by
Given the unavoidable practical constraints, the oveefillf

bility of the predicted long-term wind distribution remaihighly Mot Mo

sensitive to the one-year distribution of recorded on-diéa. W 1 2j=1j#i Ad 2 i=1,j+i Ah (1)
Quantifying and modeling the uncertainty in the MCP methods ' 2(Mer — 1) z?ﬁflAdj Z?:flAhj

would provide more credibility to wind resource assessraenit
wind plant performance estimation. Kwon [14] and Lackner et . o
al. [15] presented different frameworks to analyze ungetta whereret IS the.number of reference §tat|ons, did andAh,
in MCP-based wind resource assessment. The wind resource- SPreSent the dlstgnhce and the elevation difference bateree
based uncertainty models proposed by Messac et al. [16]e&an b target plant site angf” reference station, respectively.

. ) - In the following subsections, we briefly discuss how this pa-
filsggevghﬂi%gg‘?g&%éﬁ;giﬁeﬁwrded at meteoraibgia per advances the key components of the original hybrid MCP

method. These advanced features provide helpful flexilidit
the hybrid MCP method, and extends its applicability to gesi
Research Objectives and Motivation ing full-scale commercial wind plants.

The hybrid MCP method recently developed by Zhang et al.
[17] combines the component MCP algorithms by charactayizi
the distance and elevation difference between refereaterss
and the target wind plant site. The overall objective of faper
is to significantly advance the original hybrid MCP methaxypl

Modeling the Impact of Wind Direction on the Hybrid
MCP Performance

Each wind data point was allocated to a bin according to the
wind direction sector measurement at the target wind pliéat s

by: In this paper, we investigated four cases by choosing tortion i
1. Considering both the wind speed and direction as the com- different number of sectors: (i) 4 sectors; (ii) 8 sectoiig) 16
ponents of the hybrid MCP methodology; and sectors; and (iv) 32 sectors. At the multiple referenceastat
2. Investigating the best combination of different MCP meth the concurrent wind speed and direction measurement was all
ods and reference stations. cated to the corresponding bin. Within each sector, the-teng
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wind speed was predicted by applying the hybrid MCP strategy wherev(t*) represents the measured hourly averaged wind speed
based on the concurrent short-term wind speed data within th ~ at timetk at the targeted wind plant site(t*) is the correspond-
sector. A wind rose is a graphical tool used by meteoroledast ing estimated wind speed value, andis the total number of
provide a succinct illustration of how wind speed and wind di  paired data points used in the analysis.
rection are distributed at a location. Figure 1 shows a woser The ratio of wind speed variancdg,., is expressed as
diagram with 16 direction sectors.

By putting the wind speed data in each sector together, we

NGk _ )2
obtained the set of long-term wind data at the target windtpla Ry = I/negity (9t — ) 3)
site. The quality of the predicted long-term wind data weel-ev 1/ne 3t (v(tk) — W2
uated using the performance metrics described in the foligw
subsection.

wherefandp represent the mean of the estimated and measured
wind speeds of all test paired data points.
The RMSE is given by

NORTH RMSE— i % (V(tk) _ V(tk))Z (4)
15% N |/

=1

10%

The MAE is expressed as

WEST * EAST

ity MAE = mkax‘v(tk) - V(tk)‘ (5)

-« Wind Distribution Metrics Wind speed distributions
soum o are necessary to quantify the available energy (power @ asi
a site and to design optimal wind plant configurations. Thé-Mu
tivariate and Multimodal Wind Distribution (MMWD) model
[19, 20] can capture the joint variation of wind speed, wind d
rection, and air density, and also allows representatianufi-
modally distributed data.

The MMWD model was developed based on tkernel
Density EstimatioKDE) [19, 20]. For ad — variate random
sampleU,U,, --- .U, drawn from a densityf, the multivariate
Performance Metrics for Evaluating the MCP Method KDE is defined as

Three sets of performance metrics were proposed to evalu-
ate the performance of the MCP methods: (i) statistical icgetr o 1
(i) wind distribution metrics; and (iii) wind plant perforance: fuH)=n ,;KH (u—Ui) (6)
power generation and capacity factor metrics. =

Figure 1. WIND ROSE DIAGRAM WITH 16 SECTORS

whereu = (U]_,Uz, s ,Ud)T andU; = (Uil,UiZ, s ,Uid)T, i =

1,2,---,n. Here,K(u) is the kernel that is a symmetric probabil-

ity density function;H is the bandwidth matrix, which is sym-
etric and positive-definite; ankly (u) = [H|~Y2K(H~Y/2u).
he choice ofK is not crucial to the accuracy of kernel den-

sity estimators [21]. In this papé,(u) = (2r)~%/2exp(—SuTu)

is considered, the standard normal throughout. In contiast

choice ofH is crucial in determining the performance bf22].

In the MMWD model, an optimality criterion, thasymptotic

mean integrated squared err¢22], is used to select the band-

IRV () @ width matrix. The details of the MMWD model can be found in
Ru= 1/n 3% (k) Ref. [19].

Statistical Metrics Mean long-term wind speed is often
used to characterize the potential of a wind plant site.dhigm-
portant measure of wind power potential. Four metrics agd-ev
uated based on the estimated wind speeds by MCP methods an
the reference wind speeds: (i) the ratio of mean wind spde]s [

(ii) the ratio of wind speed variances; (iii) root mean saueher-
ror (RMSE) [18]; and (iv) maximum absolute error (MAE).

The ratio of mean wind speedg,, is expressed as
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Wind Plant Performance Metrics This power gener- Crosby7s  Bowbells N Bottineau taw  Rollazs ¢ Covaliersw

ation model was adopted from Chowdhury et al. [23,24]. The

power generated by a wind plant is an intricate function ef th itisn s oG
configuration and location of the individual wind turbinékhe Brorsonsww | Wallerd Clty w
flow pattern inside a wind plant is complex, primarily beaaus s
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of the wake effects and the highly turbulent flow. The power o} e RS B e s | i
generated by a wind plan®gan) consisting ofN wind turbines @s o DO T = aw"ww ) J
is evaluated as a sum of the powers generated by the individua ~& = T SR s
turbines, which is expressed as [23] = §| soveun " e T ot
o ;E Hettinger Nw 3
= En ot Bkt maricuenal Wannar Motk (NDAIN] Britton 28 /‘
N
Polant = ;Pj (7) Figure 2. NDAWN STATION LOCATIONS [27]
Accordingly, the wind plant efficiency can be expressed as Table 1. DETAILS OF NDAWN STATIONS [27]
Station Latitude Longitude Elevation (m)
P
Nplant = Nmag (8) Dazey 47.183  -98.138 439
2 j=110j
J Galesburg  47.210 -97.431 331
wherePy; is the power thaturbine— j would generate if operat- Hillsboro 47.353 -96.922 270
ing as a stand-alone entity, for the given incoming wind g#jo ,
Detailed formulation of the power generation model can latb Mayville 47.498 -97.262 290
in the papers [23, 24]. Pillsbury 47.225 -97.791 392
The power generated by a wind plant with nine turbines was
Prosper 47.002 -97.115 284

evaluated in this paper. Two types of wind turbines were se-

lected: (i) theGE 1.5-MW-XLE[25] and (i) the GE 2.5-MW-
XL [26].

Component MCP Methods

In this research, four MCP methods were investigated: (i)

CASE STUDY: ASSESSING THE WIND RESOURCE PO~ linear regression; .
It is helpful to note that other MCP methods can also be used in

conjunction with the hybrid strategy, because the weigbterd
mination strategy is independent with the MCP method.

TENTIAL AT A WIND PLANT SITE

To implement the advanced hybrid MCP methodology, we
used the hourly averaged wind data recorded at six stations i
North Dakota between 2008 and 2010. The station Pillsbusy wa

(ii) variance ratio; (iii) ANNs; and Xi8VR.

selected as the target wind plant site. The recorded dateeat t The Linear Regression Method Linear regression is
other five stations (Dazey, Galesbury, Hillsboro, Mayvibed a common method to characterize the relationship betwesn th
Prosper) was used as reference station data. The statatiolos reference and target site wind speeds. The prediction iequiat

were shown in Fig. 2; the six stations inside the outer rgftean  given as
were used in this paper.

The wind data is obtained from the North Dakota Agricul-
tural Weather Network (NDAWN) [27]. Table 1 shows the ge-
ographical coordinates and elevation of each station. Teéam
surement information is listed as follows.

y=ax+Db 9

wherey’is the predicted wind speed at the target skés the

_ _ . observed wind speed at the reference site; aatidb are the
1. Wind speed is measured at 3 meters above the soil surfaceestimated intercept and slope of the linear relationship.

with an anemometer.
2. Wind direction is the direction from which wind is blowing
(degrees clockwise from north) measured at 3 meters above

The Variance Ratio Method When using linear regres-

the soil surfaceN — 0°: NE = 45°; E — 90°; SE= 135; S— sion, the predicted mean wind speed at the target site will be

180°; SW=225";W = 270°; NW = 315; etc) with a wind
vane. The value is the average of all measured wind direc-
tions for a 24-hour period from midnight to midnight.

close in value to the measured mean during the trainingvaker
However, the predicted variance at the target site will bs than
the measured variance. This can result in biased predgtbn
wind speed distributions.
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The variance ratio method was proposed in response to the the coefficientv can be obtained by solving a quadratic program-

above limitations of linear regression. It involves foigithe
variance of the predicted wind speed at the target site tqbale
to the measured variance at the target site. The predictjoa-e
tion is express as

O O
§=Hy— ot X (10)

X

whereyy, Ly, Ox anday are the means and standard deviations of
the two concurrent data sets.

The ANNs Method ANNSs have been used to correlate
and predict wind conditions because of their ability to gtae
patterns in noisy or otherwise complex data. A neural networ
generally contains an input layer, one or more hidden layers
an output layer. An ANN is developed by defining the following
parameters:

1. The interconnection pattern between different layerseof
rons;

2. The learning process for updating the weights of the inter
connections; and

3. The activation function that converts a neuron’s weidhte
input to its output activation.

The SVR Method SVR has gained popularity, both
within the statistical learning community [28, 29] and viith
the engineering optimization community [30-32]. The SVR ap
proach provides a unique way to construct smooth, nonlinear
regression approximations by formulating the surrogateleho
construction problem as a quadratic programming problene. T
SVR approach can be expressed as [33]

f(x) = (w,®(x))+b (11)

where(-,-) denotes the dot produat; is a set of coefficients to
be determined; an@(x) is a map from the input space to the fea-
ture space. To solve the coefficients, we can allow a predkfine
maximum tolerated errag (with respect to the actual function
value) at each data point, given by [33]

() —f(x)[ <e (12)

where f(x) is the actual function to be approximated. The flat-
ness of the approximated function can be characterized By
including slack variable§ to the constraint and a cost function,

5

ming problem given by [33]

1 2 i . S
2IWECY (&4

min
wWE,&*
subjectto f(x)— f(x)<e+§& (13)

fox)— f(x) <e+&
&i,& >0

wherenp is the number of sample points. The param€ter0 is
user-specified and represents the trade-off between fatmes
the amount up to which errors larger thamre tolerated. The
above formulation is the primal form of the quadratic pragra
ming problem. In most cases, the dual form with fewer con-
straints is easier to solve, and is widely used to define tta fin
form of the approximation. It can be shown that the dual form
is convex and therefore has a unique minimum. Typical altbwe
mapping functions are radial basis functions, such as ths-ga
sian function.

Selection of Parameters

The MATLAB Neural Network Toolbox [34] was used in
this paper. The Levenberg-Marquardt algorithm was seldote
neural network training. Eighty percent data points were ra
domly selected as training points; and 20 percent pointewer
used to validate the network. The MSE metric was used to eval-
uate the performance of the developed neural network. For th
SVR method, we used an efficient SVM package, LIBSVM (A
Library for Support Vector Machines), developed by Chang an
Lin [35].

Results and Discussion

Two scenarios were analyzed in the case study. In the first,
the hybrid MCP strategy was implemented without binningdvin
data points to different sectors. The objective of the fitetrio
was to investigate the performance of the hybrid MCP method
with mixing combinations of MCP algorithms and referenee st
tions. In the second scenario, we evaluated the hybrid MGP pe
formance, including consideration of both wind speed and di
rection. However, this paper discussed wind direction grity
related to the prediction of wind speed. The prediction & th
long-term wind direction at the target wind plant site was no
within the scope of this paper.

Scenario I: Hybrid MCP Methods with Mixing Com-
binations A preliminary comparison of the hybrid MCP
method (using multiple reference stations) with the iralinl
MCP method (using one reference station) was investigated i
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the paper by Zhang et al. [17]. However, the hybrid MCP meth- power generations of wind plants with 1.5-MW and 2.5-MW tur-
ods discussed in Ref. [17] used a single MCP technique for all bines, respectively. It was observed that: (i) the averadeev

five reference stations, which might not be optimal. Eachrref
ence station has the flexibility to use any of the availableRMIC

of the power generation with GE 1.5MW-XLE turbines during
the length of correlation period (Fig. 5(a)) varied 5.57%i0lgl

techniques. In this case study, the same five stations were se the 1,024 hybrid MCP models; and (ii) the average value of the

lected as reference stations. In addition, each statiobeaom-
bined into the hybrid MCP method with one of the four follow-
ing MCP algorithms: (i) linear regression; (ii) variancéoa(iii)
neural network; and (iv) SVR. Therefore, a total of 1,024 i@gkh

is equal to 4) combinations were investigated to formulate the
hybrid MCP strategy.

power generation with GE 2.5MW-XL turbines during the ldngt
of correlation period (Fig. 5(b)) varied 4.81% during th@24
hybrid MCP models.

Scenario Il: Hybrid MCP Methods Considering

Figs. 3-5 illustrate the three sets of performance metrics. Wind Speed and Direction Each wind data point was al-
Each line in the figures represents one specific combinafion o located to a bin according to the wind direction sector mesasu
stations and MCP algorithms. It was observed that the perfor Mentat the target plant site (Pillsbury station). In thescgtady,
mance of the hybrid MCP technique varied significantly. For four cases were investigated: (i) 4 sectors; (ii) 8 sect@ity;
instance, the average value of RMSE during the length of cor- 16 sectors; and (iv) 32 sectors. For the five reference smtio

relation period (Fig. 3(c)) varied 4.91% during the 1,024%tg
MCP models.

(Dazey, Galesbury, Hillsboro, Mayville, and Prosper), tioa-
current wind speed and direction measurement was allotated

The smaller the RMSE value, the more accurate the esti- the corresponding bin. Within each sector, the long-termdwi
mated wind pattern. Based on the RMSE values, we found SPeed was predicted by applying the hybrid MCP strategycbase

the best combination of MCP algorithms and reference statio
shown in Table 2. In the table, “Ratio,” “Linear,” “ANN,” and
“SVR” represent variance ratio, linear regression, aréfineu-
ral networks, and support vector regression, respectiviedyr

on concurrent short-term wind speed data within that sedtor
Scenario Il, the hybrid MCP strategy used a single MCP tech-
nique for all five reference stations.

Figure 6 shows the ratio of mean wind speeds with the four

combinations were observed based on the |ength of the Corre_diﬁerent direction sectors. The closer the value of theratto

lation period. It was shown from Table 2 that: (i) the varianc
ratio algorithm was chosen at the Dazey, Mayville, and Repsp
reference stations for all four correlation periods; (i@ SVR al-
gorithm was selected at the Galesbury reference station tiee
correlation period was between 3,500-11,500 hours; aidfii
the Hillsboro reference station, different MCP algorithwesre
selected based on the length of the correlation period.

The two-parameter Weibull distribution was the most widely
accepted distribution for wind speed. The shape paramigter (
and the scale parametej (letermine the probability distribution.
In this research, the ratios &f(and ) for the predicted wind
speeds t& (andc) for the observed targeted wind spedgsand
R:, were evaluated. The valuesRf andR; are given by

Rc=-, and R= (14)

x| =
Ol

Figure 4 shows the normalized Weibklland c parameters
for the total 1,024 combinations. The closer the value of#tie
is to one, the more accurate the estimated long-term windieon
tion. The average values Bf andR; varied 1.94% and 15.82%,
respectively, throughout the 1,024 different combinatiofihe
above observation indicates that the scale parameté (nore
sensitive to the MCP strategies than the shape parankgter (

The power generation of the nine-turbine wind plant is

one, the more accurate the estimated wind pattern. It was ob-
served that: (i) the hybrid MCP methods performed relajivel
better than the the individual MCP algorithms; (ii) the higor
SVR algorithm performed relatively worse than the othee¢hr
hybrid MCP methods; (iii) the hybrid linear regression, the

brid variance ratio, and the hybrid neural network methagls p
formed best when the correlation period was between 5,500-
8,500 hours (approx. 8 to 12 months).

Figure 7 shows the wind speed distributions with the four
different direction sectors. The closer the predictedrithistion
curve is to the actual distribution curve (the black linetie fig-
ure), the more accurate the estimated wind pattern. It was ob
served that: (i) for 8, 16, and 32 direction sectors, the ia\ari-
ance ratio method (solid blue line) agreed more with theactu
distribution curve (solid black line) than other MCP methpd
(i) for 4 direction sectors, the individual variance ratieethod
(dashed blue line) agreed more with the actual distributione.

Figure 8 shows the wind power generation of the wind plant
with nine GE 1.5MW-XLE turbines. The closer the predicted
power generation curve to the actual power generation dtimee
black line in the figure), the more accurate the estimatealiwin
pattern. The predicted power generation of the wind plarg wa
estimated using the long-term wind data predicted by theitdyb
MCP method; the actual wind plant power generation was es-
timated using the measured long-term wind data. We observed
that: (i) the hybrid variance ratio method performed bes¢mvh

shown in Fig. 5. Figs. 5(a) and 5(b) show the 1,024 wind the correlation period was between 2,000-3,500 hours ¢ppr

6
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Normalized mean

Root Mean Squared Error (m/s)

Table 2. BEST COMBINATION OF MCP ALGORITHMS AND REFERENCE STATIONS

Station 2,000-3,500 (hours) 3,500-5,500 (hours) 5,560@(hours) 8,500-11,500 (hours)

Dazey Ratio Ratio
Galesburg Ratio SVR
Hillsboro Linear Linear
Mayville Ratio Ratio

Prosper Ratio Ratio

Ratio

SVR
ANN
Ratio

Ratio

Ratio

SVR
SVR
Ratio

Ratio

Normalized variance

95 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
2000 3000 4000 5000 6000 7000 8000 9000 10000 11000
The length of correlation period (hour)

(a) Mean ratio

Maximum Absolute Error (m/s)

05 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
2000 3000 4000 5000 6000 7000 8000 9000 10000 11000
The length of correlation period (hour)

(b) Variance ratio

09 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
2000 3000 4000 5000 6000 7000 8000 9000 10000 11000
The length of correlation period (hour)

(¢) RMSE

2000 3000 4000 5000 6000 7000 8000 9000 10000 11000
The length of correlation period (hour)

(d) MAE

Figure 3. Statistical performance metrics to evaluate the hybrid MCP with 1,024 combinations

Copyright © 2013 by ASME



1.08

[y

o

>
T

1.041

1.021

[y

Normalized weibull k parameter

o

©

©
.

Normalized weibull ¢ parameter

09 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
2000 3000 4000 5000 6000 7000 8000 9000 10000 11000
The length of correlation period (hour)

6
0

(a) Normalized Weibull k parameter

2000 3000 4000 5000 6000 7000 8000 9000 10000 11000
The length of correlation period (hour)
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Figure 4. WIND DISTRIBUTION METRICS TO EVALUATE THE HYBRID MCP WITH 1,024 COMBINATIONS

o

b
o

6.5

Power geneartion (W)

Power geneartion (W)

2000 3000 4000 5000 6000 7000 8000 9000 10000 11000
The length of correlation period (hour)

(a) Power generation witBE 1.5-MW-XLEurbines
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The length of correlation period (hour)

(b) Power generation witE 2.5-MW-XLturbines

Figure 5. POWER GENERATION METRICS TO EVALUATE THE HYBRID MCP WITH 1,024 COMBINATIONS

mately 2.5 to 5 months) for all four direction sectors; (figtin-
ear regression and the neural network methods had relatieél
ter power generation estimations when the correlatioropgevas
between 6,000-9,000 hours (approximately 8.5 to 12.5 n®)nth
(iii) the power generation was generally overestimated hpy t
neural network, hybrid neural network, linear regressioorid
linear regression, and hybrid variance ratio methods; afthe
power generation was generally under-estimated by the 8yR,
brid SVR, and variance ratio methods.

CONCLUSION

This paper developed an advanced hybrid MCP methodol-
ogy that accounts for the variations of both wind speed and di
rection. The advanced hybrid MCP method uses the recorded
data of multiple reference stations to estimate the longr-teind
condition at a target plant site. Two scenarios were andlyse
ing the hybrid MCP methodology, and interesting resultsever
observed and discussed.

Because each reference station has the flexibility to use any
of the available MCP techniques, the multiple referencetiara

Copyright © 2013 by ASME



1.05 T T
P———
1
mema Seame IR L ) ® oy e h
0.95 /\_/— 0.85 M
c c
8 oo 18 oo 1
IS e
T | e Tmemea 3 ammmmT Tl wemmm——— -
& o.8sf BT cmmmme===mmmTT =y Bosst TUmeemmmeent A
© ©
IS - - IS - -
= 0.8 = = =Linear regression n = 08 = = =Linear regression H
o - : o : ;
Z = = =Variance ratio =z = = =Variance ratio
Neural network Neural network
0.751 = = = Support vector regression [ 0.75 = = = Support vector regression
== Hybrid linear regression == Hybrid linear regression
0.7 = Hybrid variance ratio H 0.7+ = Hybrid variance ratio H
Hybrid neural network Hybrid neural network
— Hybrld support vector regressnon — Hybnd support vector regressron
0.65
2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000
The length of correlation period (hour) The length of correlation period (hour)
(a) 4 direction sectors (b) 8 direction sectors
1.05 T T T =
c c
8 ool 18
g .—-‘__---~.__s P IS . .
fe) ~~------- ----- ‘—_— - o 4 ~.--__-___‘_--
& o5t {1 8 osst 1
© ©
IS - - IS - -
= 0.8 = = =Linear regression n = 08 = = =Linear regression H
o - : o - ;
zZ = = =Variance ratio =z = = =Variance ratio
Neural network Neural network
0.751 = = = Support vector regression [ 0.751 = = = Support vector regression
== Hybrid linear regression == Hybrid linear regression
0.7 = Hybrid variance ratio H 0.7+ = Hybrid variance ratio H
Hybrid neural network Hybrid neural network
— Hybrld support vector regressnon — Hybnd support vector regressron
2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000
The length of correlation period (hour) The length of correlation period (hour)
(c) 16 direction sectors (d) 32 direction sectors
Figure 6. THE RATIO OF MEAN WIND SPEEDS WITH DIFFERENT DIRECTION SECTORS
stations were combined into the hybrid MCP strategy with the In the second scenario, both wind speed and direction were

best suitable MCP algorithm for each reference station.hént  considered in the application of the hybrid MCP strategy. We
first scenario, each reference weather station used one &flth found that the hybrid MCP methodology performed best when

lowing MCP algorithms: (i) linear regression; (ii) variaatio; the correlation period was between 5,500-8,500 hours ¢appr
(i) neural network; and (iv) support vector regressiorheffe- mately 8 to 12 months) based on the ratio of mean wind speeds.
fore, a total of 1,024 (which is equal t§combinations were in- For the nine-turbine wind plant, the power generation was ge

vestigated to formulate the hybrid MCP strategy. The belstidy erally overestimated by the neural network, hybrid neuedt n
MCP strategy of MCP algorithms and reference station combi- work, linear regression, hybrid linear regression, and-iaari-
nation was determined and analyzed. We found that the ancura ance ratio methods; it was under estimated by the suppaddivec
of the hybrid MCP method was highly sensitive to the combina- regression, hybrid support vector regression, and vagiaaio
tion of individual MCP algorithms and reference stationse W  methods.

also found that the best hybrid MCP strategy varied baseden t
length of the correlation period. Quantifying and modeling the uncertainty in the MCP meth-

ods would provide more credibility to wind resource ass&sgm

9 Copyright © 2013 by ASME
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Figure 7. WIND DISTRIBUTION METRICS WITH DIFFERENT DIRECTION SECTORS

and wind plant performance estimation. Modeling the prapag expressed in this paper are those of the authors and do not nec
tion of uncertainty through the MCP process would allow guan essarily reflect the views of the NSF. This work was also sup-
tification of the expected uncertainty in on-site wind cadiaatis ported by the U.S. Department of Energy under Contract No.
and wind plant power generation. In addition, an investigat DE-AC36-08-G028308 with NREL.
of how the uncertainties in the annual distribution of wirthe
ditions interact with the uncertainties inherent in the M-
relation methodology is also necessary. This investigaan REFERENCES
important topic for future research. [1] EWEA, 2011. Wind energy - the facts. http://www.wind-
energy-the-facts.org.
[2] Sheppard, C. J. R., 2009. “Analysis of the measure-
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