Goodin, C.,
Moore, M.,
Carruth, D. W., Aspin, Z., & Kaniarz, J. (2024). Geometric Fidelity Requirements for Meshes in Automotive Lidar Simulation.
Virtual Worlds. MDPI.
3(3), 270-282.
DOI:10.3390/virtualworlds3030014. [
Abstract] [
Document Site]
Carruth, D. W.,
Goodin, C.,
Dabbiru, L., Scherer, N.,
Moore, M.,
Hudson, C. R., Cagle, L. D., & Jayakumar, P. (2024). Comparing Real and Simulated Performance for an Off-Road Autonomous Ground Vehicle in Obstacle Avoidance.
Journal of Field Robotics. Wiley.
41(3), 798-810.
DOI:10.1002/rob.22289. [
Abstract] [
Document Site]
Lei, T.,
Luo, C., Yang, S. X.,
Carruth, D. W., & Bi, Z. (2023). Bio-Inspired Intelligence-Based Multiagent Navigation with Safety-Aware Considerations.
IEEE Transactions on Artificial Intelligence. IEEE.
5(6), 2496-2961.
DOI:10.1109/TAI.2023.3334227. [
Abstract] [
Document Site]
Lei, T., Sellers, T.,
Luo, C.,
Carruth, D. W., & Bi, Z. (2023). Graph-based Robot Optimal Path Planning with Bio-inspired Algorithms.
Biomimetic Intelligence and Robotics. Elsevier.
3(3), 100119.
DOI:10.1016/j.birob.2023.100119. [
Abstract] [
Document] [
Document Site]
Goodin, C., Carrillo, J. T., Monroe, J. G.,
Carruth, D. W., &
Hudson, C. R. (2021). An Analytic Model for Negative Obstacle Detection with Lidar and Numerical Validation Using Physics-Based Simulation.
sensors. MDPI.
21(9), 3211.
DOI:10.3390/s21093211. [
Abstract] [
Document] [
Document Site]
Dabbiru, L.,
Goodin, C., Scherer, N., &
Carruth, D. W. (2020). LiDAR Data Segmentation in Off-Road Environment Using Convolutional Neural Networks (CNN).
SAE International Journal of Advances and Current Practices in Mobility. SAE International.
2, 3288-3292.
DOI:https://doi.org/10.4271/2020-01-0696. [
Abstract]
Sharma, S.,
Ball, J. E., Tang, B.,
Carruth, D. W., Doude, M., & Islam, M. (2019). Semantic Segmentation with Transfer Learning for Off-Road Autonomous Driving.
Sensors. MDPI.
19(11), 2577.
DOI:10.3390/s19112577. [
Abstract] [
Document] [
Document Site]
Li, X., Tang, B.,
Ball, J. E., Doude, M., &
Carruth, D. W. (2019). Rollover-Free Path Planning for Off-Road Autonomous Driving.
Electronics. MDPI.
8(6), 614.
DOI:10.3390/electronics8060614. [
Abstract] [
Document] [
Document Site]
Liu, Y., LeClair, A. M., Doude, M., &
Burch V, R. F. (2018). Development of A Data Acquisition System for Autonomous Vehicle Systems.
International Journal of Vehicle Structures & Systems. Maftree.org.
10(4), 251-256.
Deb, S.,
Strawderman, L., &
Carruth, D. W. (2018). Investigating Pedestrian Suggestions for External Features on Fully Autonomous Vehicles: A Virtual Reality Experiment.
Transportation Research Part F Traffic Psychology and Behaviour.
59(Part A), 135-149.
Goodin, C., Doude, M.,
Hudson, C. R., &
Carruth, D. W. (2018). Enabling Off-Road Autonomous Navigation-Simulation of LIDAR in Dense Vegetation.
Electronics. MDPI.
7(9), 154.
DOI:10.3390/electronics7090154. [
Abstract] [
Document] [
Document Site]
Deb, S., Rahman, M. M., Strawderman, L. J., & Garrison, T. M. (2018). Pedestrians’ Receptivity Toward Fully Automated Vehicles: Research Review and Roadmap for Future Research.
IEEE Transactions on Human-Machine Systems. IEEE.
PP(99), 1-12.
DOI:10.1109/THMS.2018.2799523. [
Abstract] [
Document Site]
Deb, S.,
Strawderman, L.,
Carruth, D. W., DuBien, J., Smith, B. K., & Garrison, T. M. (2017). Development and Validation of a Questionnaire to Assess Pedestrian Receptivity toward Fully Autonomous Vehicles.
Transportation Research Part C: Emerging Technologies.
84, 178-195. [
Abstract] [
Document Site]
Durst, P., Anderson, D., &
Bethel, C. L. (2017). A Historical Review of the Development of Verification and Validation Theories for Simulation Models.
International Journal of Modeling, Simulation, and Scientific Computing.
8(2), 1-24.
DOI:10.1142/S1793962317300011. [
Abstract]
Rafi, M., Senyurek, V., &
Gurbuz, A. (2024). Performance Assessment of Crop Line Detection in Corn Field from Unmanned Aerial Vehicle Video.
SPIE 13053, Autonomous Air and Ground Sensing Systems for Agricultural Optimization and Phenotyping IX. National Harbor, Maryland, United States: SPIE.
13053, 89-98.
DOI:doi.org/10.1117/12.3013501. [
Abstract] [
Document Site]
Dabbiru, L.,
Goodin, C.,
Carruth, D. W., Aspin, Z., Carrillo, J., & Kaniarz, J. (2024). Simulation Fidelity Analysis Using Deep Neural Networks.
Proc. SPIE 13035, Synthetic Data for Artificial Intelligence and Machine Learning: Tools, Techniques, and Applications II. National Harbor, MD, USA: SPIE.
13035.
DOI:10.1117/12.3012275. [
Abstract] [
Document Site]
Sellers, T., Lei, T.,
Luo, C., Liu, L., &
Carruth, D. W. (2024). Enhancing Human-robot Cohesion through HAT Methods: A Crowd-avoidance Model for Safety Aware Navigation.
Proc. 2024 IEEE 4th International Conference on Human-Machine Systems (ICHMS). Toronto, ON, Canada.
DOI:10.1109/ICHMS59971.2024.10555725. [
Abstract] [
Document Site]
Sellers, T., Lei, T., Rogers, H.,
Carruth, D. W., &
Luo, C. (2023). Autonomous Multi-robot Allocation and Formation Control for Remote Sensing in Environmental Exploration.
Proc. SPIE 12540, Autonomous Systems: Sensors, Processing, and Security for Ground, Air, Sea, and Space Vehicles and Infrastructure 2023. Orlando, FL, USA: SPIE.
12540.
DOI:10.1117/12.2663894. [
Abstract] [
Document Site]
Dabbiru, L.,
Goodin, C.,
Carruth, D. W., & Boone, J. (2023). Object Detection in Synthetic Aerial Imagery Using Deep Learning.
Proc. SPIE 12540, Autonomous Systems: Sensors, Processing, and Security for Ground, Air, Sea, and Space Vehicles and Infrastructure 2023. Orlando, FL, USA: SPIE.
12540.
DOI:10.1117/12.2662426. [
Abstract] [
Document Site]
Goodin, C.,
Carruth, D. W.,
Dabbiru, L.,
Hedrick, M., Aspin, Z., Carrillo, J. T., & Kaniarz, J. (2023). Fidelity Requirements for Simulating Sensor Performance in Autonomous Ground Vehicles.
Proc SPIE 12529, Synthetic Data for Artificial Intelligence and Machine Learning: Tools, Techniques, and Applications. Orlando, FL, USA: SPIE.
12529.
DOI:10.1117/12.2661663. [
Abstract] [
Document Site]
Sellers, T., Lei, T.,
Carruth, D. W., &
Luo, C. (2023). Deep Learning-based Heterogeneous System for Autonomous Navigation.
Proc SPIE 12539, Autonomous Air and Ground Sensing Systems for Agricultural Optimization and Phenotyping VIII. Orlando, FL, USA: SPIE.
12539.
DOI:10.1117/12.2665844. [
Abstract] [
Document Site]
Rogers, H., Sellers, T., Lei, T.,
Carruth, D. W., &
Luo, C. (2023). Sensor-based Multi-waypoint Autonomous Robot Navigation with Graph-based Models.
Proc. SPIE 12540, Autonomous Systems: Sensors, Processing, and Security for Ground, Air, Sea, and Space Vehicles and Infrastructure 2023. Orlando, FL, USA: SPIE.
12540.
DOI:10.1117/12.2663830. [
Abstract] [
Document Site]
Goodin, C.,
Carruth, D. W.,
Dabbiru, L., Cagle, L. D.,
Harvel, N., Monroe, J. G., & Parker, M. W. (2023). Generating Medium-scale Synthetic Snowy Scenes for Testing Autonomous Vehicle Navigation.
Proc. SPIE 13035, Synthetic Data for Artificial Intelligence and Machine Learning: Tools, Techniques, and Applications II. National Harbor, MD, USA: SPIE.
13035.
DOI:10.1117/12.3009866. [
Abstract] [
Document Site]
Lei, T., Chintam, P.,
Carruth, D. W., Jan, G. E., &
Luo, C. (2022). Human-Autonomy Teaming-Based Robot Informative Path Planning and Mapping Algorithms with Tree Search Mechanism.
2022 IEEE International Conference on Human-Machine Systems (IEEE-ICHMS). Orlando, FL, USA: IEEE.
DOI:10.1109/ICHMS56717.2022.9980708. [
Abstract] [
Document Site]
Goodin, C.,
Carruth, D. W.,
Dabbiru, L.,
Hudson, C. R., Cagle, L. D., Scherer, N.,
Moore, M., & Jayakumar, P. (2022). Simulation-based Testing of Autonomous Ground Vehicles.
Proc. SPIE 12115, Autonomous Systems: Sensors, Processing and Security for Ground, Air, Sea and Space Vehicles and Infrastructure 2022. Orlando, FL, USA: SPIE.
12115.
DOI:10.1117/12.2620502. [
Abstract] [
Document Site]
Carruth, D. W.,
Walden, C.,
Goodin, C., &
Fuller, S. (2022). Challenges in Low Infrastructure and Off-Road Automated Driving.
2022 Fifth International Conference on Connected and Autonomous Driving (MetroCAD). Detroit, MI, USA. 13-20.
DOI:10.1109/MetroCAD56305.2022.00008. [
Abstract] [
Document Site]
Kurum, M.,
Gurbuz, A., Barnes, S., Boyd, D. R., Farhad, M., & Senyurek, V. (2021). A UAS-based RF Testbed for Water Utilization in Agroecosystems.
Autonomous Air and Ground Sensing Systems for Agricultural Optimization and Phenotyping VI. Proc. SPIE 11747: International Society for Optics and Photonics.
11747, 117470J.
DOI:10.1117/12.2591895. [
Abstract] [
Document Site]
Dabbiru, L.,
Goodin, C., &
Carruth, D. W. (2020). LiDAR Data Segmentation in Off-road Environment Using Convolutional Neural Networks (CNN).
SAE International. Detroit, MI.
DOI:10.4271/2020-01-0696. [
Abstract] [
Document Site]
Hudson, C. R., Lucius, R., Gray, R., Powell, B., Doude, M., &
Carruth, D. W. (2019). Using Simulation to Accelerate Development of User Interfaces for Autonomous Vehicles.
Human Computer Interaction International 2019. Orlando, FL. [
Document]
Meadows, W. S.,
Hudson, C. R.,
Goodin, C.,
Dabbiru, L., Powell, B., Doude, M.,
Carruth, D. W., Islam, M.,
Ball, J. E., & Tang, B. (2019). Multi-LiDAR Placement, Calibration, Co-registration, and Processing on a Subaru Forester for Off-road Autonomous Vehicles Operations.
Proceedings Volume 11009, Autonomous Systems: Sensors, Processing, and Security for Vehicles and Infrastructure 2019. Baltimore, MD.
DOI:10.1117/12.2518915. [
Abstract] [
Document Site]
Deb, S.,
Hudson, C. R.,
Carruth, D. W., & Frey, D. (2018). Pedestrians Receptivity in Autonomous Vehicles: Exploring a Video-based Assessment.
Proceedings of the Human Factors and Ergonomics Society Annual Meeting. Philadelphia, PA.
62(1), 2061-2065. [
Abstract] [
Document Site]
Hudson, C. R.,
Goodin, C., Doude, M., &
Carruth, D. W. (2018). Analysis of Dual LIDAR Placement for Off-Road Autonomy Using MAVS.
2018 World Symposium on Digital Intelligence for Systems and Machines (DISA). Košice, Slovakia: IEEE.
DOI:10.1109/DISA.2018.8490620. [
Abstract] [
Document Site]
Durst, P. J.,
Goodin, C., Anderson, D., &
Bethel, C. L. (2017). A Reference Autonomous Mobility Model.
50th Winter Simulation Conference (WSC 2017). Las Vegas, NV.
Rahman, M. M.,
Strawderman, L., &
Carruth, D. W. (2017). Effect of Driving Contexts on Driver Acceptance of Advanced Driver Assistance Systems.
Proceedings of the HFES 2017 International Annual Meeting. Austin, TX.
Davis, J., Bednar, A.,
Goodin, C., Durst, P., Anderson, D., &
Bethel, C. L. (2017). Optimizing Maximally Stable Extremal Region Parameters Using Machine Learning.
SPIE Defense + Commercial Sensing Expo - Infrared Technology and Applications XLIII Track. Anaheim, CA: SPIE. [
Abstract]
Bethel, C. L., Henkel, Z. M., Eakin, D. K., May, D., & Pilkinton, M. (2017). Moving Toward an Intelligent Interactive Social Engagement Framework for Information Gathering.
Proceedings of the 15th IEEE International Symposium on Applied Machine Intelligence and Informatics (SAMI 2017). Herl'any, Slovakia: IEEE. [
Abstract]
Deb, S., Poudel, S., Bhandari, S., & Warner, B. (2016). Identification of External Design Preferences in Autonomous Vehicles.
Proceedings of the 2016 Industrial and Systems Engineering Research Conference. Anaheim, CA.
Haupt, T., Voruganti, A., Kalyanasundaram, A., & Zhuk, I. (2006). Grid-Based System for Product Design Optimization.
2nd IEEE International Conference on e-Science and Grid Computing,. Amsterdam, the Netherlands. [
Abstract]
Cho, K., Kwon, S. J., & Suh, M. W. (). Vehicle Dynamic Simulation for the Robust Control of Autonomous Driving.
Proceedings of the 8th Tokyo AVCS Conference. Tokyo , Japan: Tokyo AVCD Conference.
Cho, K., Kwon, S. J., & Suh, M. W. (2004). A Study on the Model-Matching Control in the Longitudinal Autonomous Driving System. Int. J. of Automotive Technology. Int. J. of Automotive Technology. 5(2), 135-144.